
www.manaraa.com

FUNDAMENTALS OF SOFTWARE DESIGN SCIENCE

by

David Paul Ralph

B. Comm., Memorial University of Newfoundland, 2005
B. Sc., Memorial University of Newfoundland, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Business Administration)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2010

© David Paul Ralph, 2010

www.manaraa.com

ABSTRACT

This dissertation comprises three essays on software design science, the philosophical, theoretical and

empirical study of software creation and modification including its phenomenology, methodology and

causality. The essays consider three limitations evident in the software design science literature: 1) lack of

a precisely-defined, well-understood vocabulary; 2) difficulties surrounding empirical research; 3) lack of

theory concerning the design process’s structure and organization.

The first essay presents an extensive review of definitions of design, revealing nontrivial disagreements

regarding its nature and scope. Following this, a formal definition of design and a conceptual model of

design projects are constructed. The definition incorporates seven elements – agent, object, environment,

goals, primitives, requirements and constraints. The conceptual model views design projects as temporal

trajectories of work systems, in which human agents design systems for stakeholders, using resources and

tools. This provides a detailed, defensible basis for theoretical and empirical software design science

research.

The second essay addresses the difficulties of empirical software design science research by elucidating a

broad, bipolar conflict in design literature between two incompatible beliefs: 1) the belief that design is an

innately cognitive, approximately rational, plan-centered activity (Reason-Centric Perspective); 2) the

belief that design is an emergent phenomenon, improvised through continual interaction between agents

and environments (Action-Centric Perspective). Each perspective is operationalized through a software

design process theory: the Function-Behavior-Structure Framework (chosen for the Reason-Centric

Perspective) and the Sensemaking-Coevolution-Implementation Framework (proposed for the Action-

Centric Perspective).

The third essay presents a survey study comparing these perspectives and theories. Responses from 1384

software development professionals in 65 countries indicate that the Sensemaking-Coevolution-

Implementation Framework more accurately describes the structure and organization of their design

processes than the Function-Behavior-Structure Framework. Gender, education, experience, nationality,

occupation, team size, project duration, firm size, methodologies in use, and the nature of the software

had no measurable effect on this finding. This supports a theory of the design process’s structure and

organization and facilitates several streams of empirical research including studies of design project

success.

ii

www.manaraa.com

PREFACE

The first of the three research essays comprising this dissertation was joint work with my supervisor,

Professor Yair Wand. The project described was jointly identified by the authors and the research method

was designed collaboratively. I performed the data collection and analysis and wrote the text. Professor

Wand was heavily involved in the paper’s editing and revision. The results were presented at two

conferences, once by Professor Wand and once by me. The second and third essays were single-author

endeavors.

A previous version of the first essay was published in Lyytinen, K., Loucopoulos, P., Mylopoulos, J., and

Robinson, W., editors, Design Requirements Workshop (LNBIP 14), 2009, pp. 103-136. Springer-Verlag.

The second essay is under review at a top-tier MIS journal. A previous version of the third essay was

published in the R. Winter, J. L. Zhao and S. Aier (Eds.): Global Perspectives on Design Science

Research (LNCS 6105), pp. 61-76. Springer-Verlag.

This research was approved by the University of British Columbia Behavioral Research Ethics Board

(certificate number H08-00416).

iii

www.manaraa.com

TABLE OF CONTENTS

..Abstract	

 ii

..Preface	

 iii

..Table of Contents	

 iv

...List of Tables	

 viii

...List of Figures	

 x

..Acknowledgements	

 xi

...Chapter 1: An Introduction to Software Design Science	

 1

...1.1 The Scope of Software Design Science	

 2

..1.2 Two Factions in Design Science	

 4

...1.3 The Three Problems in Software Design Science	

 7

..1.4 Summary of Contribution 	

 9

...........................Chapter 2: A Proposal for a Formal Definition of the Design Concept	

 11

...2.1 Introduction	

 12

...2.2 Proposing a Formal Definition of Design	

 13
...2.2.1 Design in the Literature	

 13

...2.2.2 Suggesting a Definition of Design	

 15
..2.2.3 What Can Be Designed and Examples of Design Elements	

 19

...2.2.4 Scope of Design	

 20

..2.3 Evaluating the Proposed Definition of Design	

 23
..2.3.1 Definition Evaluation Criteria	

 23

...2.3.2 Areas of Agreement	

 24
...2.3.3 Areas of Disagreement	

 24

...2.3.4 Usefulness and Usability	

 25

..2.4 A Conceptual Model for Design Projects	

 26
..2.4.1 Discussion of Concepts	

 28

..2.4.2 Evaluation of the Conceptual Model of Design Projects	

 32

...2.5 Potential Applications	

 32

iv

www.manaraa.com

..2.5.1 Application 1: Design Knowledge Management System 	

 33
...2.5.2 Application 2: Design Approach Classification Framework	

 35

..2.6 Discussion and Implications for Software Design Research 	

 36
...2.6.1 Completeness, Design Agency and Software Architecture	

 36

..2.6.2 Implications for Research	

 38
....................................2.6.3 Goals vs. Requirements in Information Systems Development	

 39

..2.7 Conclusion	

 41

Chapter 3: The Sensemaking-Coevolution-Implementation Framework of Software

..Design	

 43

...3.1 Introduction	

 44

...3.2 Literature Review – Pre-theoretical Contributions	

 46
..3.2.1 Design Paradigms	

 47

..3.2.2 The Design Space / Problem Space Distinction 	

 51
...3.2.3 Design Scope and the Design Process I/O Model	

 52

..3.2.4 Systems Development Method(ologie)s	

 53
...3.2.5 Amethodical Software Development	

 58

..3.2.6 The Conscious Competence Learning Model	

 60
..3.2.7 Summary of Pre-theoretical Contributions	

 61

..3.3 Literature Review - Theoretical Contributions	

 61
...3.3.1 The Basic Design Cycle	

 61

..3.3.2 The Problem-Design Exploration Model	

 63
...3.3.3 Alexander’s Design Processes	

 64

..3.3.4 The Function-Behavior-Structure Framework	

 66
...3.3.5 Analysis of Theoretical Contributions	

 73

...3.4 Reason- and Action-Centric Perspectives	

 79
..3.4.1 Defining the Two Perspectives	

 79

...3.4.2 How to Test Perspectives	

 81
..3.4.3 Operationalizing the Perspectives	

 82

..3.4.4 New Theory Criteria	

 83

..3.5 Proposing The SCI Framework 	

 84
..............................3.5.1 The Sensemaking-Coevolution-Implementation Framework (SCI)	

 84

...3.5.2 SCI Framework Definitions	

 89
..3.5.3 Conceptual Evaluation	

 90

...3.5.4 Empirically Evaluating the SCI Framework	

 92
...3.5.5 Limitations of Proposed Theory and Future Additions	

 95

v

www.manaraa.com

..3.6 Conclusion	

 96
...3.6.1 Contribution and Scope	

 96

..3.6.2 Implications for Academics and Managers	

 97
..3.6.3 The Way Forward 	

 98

Chapter 4: A Comparative, Empirical Evaluation of two Software Design Process

...Theories	

 100

..4.1 Introduction	

 101

...4.2 Two Perspectives on Software Design	

 102

...4.2.1 The Reason-Centric Perspective	

 102
..4.2.2 The Action-Centric Perspective	

 106

.....................................4.2.3 Comparative Analysis of Perspectives and Process Theories	

 108

...4.3 Research Design	

 111

...4.3.1 Hypothesis	

 112
...4.3.2 Instrument Development and Validation	

 113

..4.3.3 Side Note on Measurement Issues	

 114
...4.3.4 Sampling Strategy and Administration	

 116

...4.3.5 Interpreting the Results	

 116

..4.4 Results	

 117
..4.4.1 Sample and Demographics	

 117

..4.4.2 Testing Hypothesis H1	

 118
...4.4.3 Exploratory Analysis	

 121

..4.5 Discussion and Conclusion	

 127
...4.5.1 Contributions	

 127

...4.5.2 Implications for Academics and Managers	

 128
...4.5.3 Lessons Learned Regarding Viral Sampling	

 130

..4.5.4 Limitations	

 131
..4.5.5 Future Work (Phase 2)	

 132

...4.5.6 Concluding Remarks	

 134

..........Chapter 5: A Software Design Science Research Program for the Next Decade	

 135

...5.1 Design Project Success	

 137

...5.2 Adoption and Use of Design Methodics	

 137

..5.3 Effectiveness of Design Methodics	

 138

...5.4 Reforming the Software Design Curricula	

 140
vi

www.manaraa.com

..5.5 A Research Agenda for Software Design Science	

 141

...Bibliography	

 144

..Appendices	

 152

..Appendix A: Dismissing the SDLC	

 153
...A.1 SDLC as a Theory	

 154
..A.2 SDLC as a Method	

 155

..A.3 SDLC as a Class of Phenomena	

 157
...A.4 How SDLC Causes Harm	

 157

..A.5 Conclusion 	

 158
..A.6 An Alternative to SDLC	

 158

...Appendix B: Analysis of Existing Definitions of Design	

 160

..Appendix C: Background on Process Theories	

 166

...Appendix D: Extended Design Literature Review	

 171

...Appendix E: Questionnaire Items	

 173
..Project Summary	

 173

...Propositions 1 and 3 	

 173
..Proposition 2	

 174

...About You and Your Project	

 175

..................................Appendix F: Behavioral Research Ethics Board Certificate of Approval	

 177

vii

www.manaraa.com

LIST OF TABLES

Table 2-1. ... Frequency of Common Concepts in Analyzed Definitions	

 14

Table 2-2. .. Definitions of Design Concepts	

 18

Table 2-3. ... Examples of Design Elements	

 21

Table 2-4. .. Incorporation of Areas of Agreement	

 24

Table 2-5. .. Identified Design Weltanschauung	

 31

Table 2-6. ... Example of Design Knowledge Indexing 	

 34

Table 2-7. ... Example Classification of Design Approaches	

 36

Table 3-1 Summary of the Technical Problem-Solving and Reflection-in-Action Paradigms	

 51

Table 3-2. ... Definitions of Concepts in the Design Process I/O Model	

 53

Table 3-3. ... Summary of Analysis of Software Development Methods	

 55

Table 3-4. ... Artifacts of the FBS Framework	

 67

Table 3-5. ... Operations of the FBS Framework	

 67

Table 3-6. ..Feedback Loops of the FBS Framework 	

 68

Table 3-7. .. Meaning of Situated FBS Framework Processes	

 71

Table 3-8. .. Analysis of Types of Process Theories	

 74

Table 3-9. .. Comparison of Design Process Theories	

 79

Table 3-10. .. Summary of Reason- and Action-Centric Perspectives	

 81

Table 3-11. ... Concepts of the SCI Framework 	

 89

Table 3-12. .. Activities of the SCI Framework	

 89

Table 4-1. ... Artifacts of the FBS Framework	

 105

Table 4-2. ... Operations of the FBS Framework	

 105

Table 4-3. ... Concepts of the SCI Framework 	

 107

Table 4-4. ..Comparison of Reason- and Action-Centric Perspectives	

 108

Table 4-5. ...Key Differences Between SCI and FBS Frameworks	

 110

Table 4-6. ...Questionnaire Items 	

 115

Table 4-7. .. Table Summary of Sample Demographics	

 118

Table 4-8. ... Questionnaire Results By Item 	

 119

Table 4-9. .. Chi-Square Test Results	

 120

Table 4-10. ... Median Score by Methods Used 	

 122

Table 4-11. .. Median Score by Demographic Dimension	

 124

Table 4-12. ... Median Score by Respondent Country	

 124

Table 4-13. .. Median Score by Sampling Origin	

 125

viii

www.manaraa.com

Table 4-14. ... Independent Samples T-test for TeamSize and Project Length	

 126

Table 4-15. .. Median Score by Project-Specific Dimension	

 126

Table 4-16. .. Median Score by Role in Project and Occupation	

 126

Table A-1. .. General Definition Evaluation Criteria	

 160

Table A-2. ...Analysis of Existing Definitions	

 161

Table A-3 .. Analysis of Types of Process Theories	

 169

ix

www.manaraa.com

LIST OF FIGURES

Fig. 1-1. .. The Stratification of Design Science	

 2

Fig. 2-1. ...Conceptual Model of Design (Noun)	

 18

Fig. 2-2. ... Context-level Conceptual Model of Design (Verb)	

 19

Fig. 2-3. .. Design Project Generalization Relationship	

 26

Fig. 2-4. ... Design Project Conceptual Model	

 27

Fig. 2-5. .. Separate Domains of Goals and Requirements	

 40

Fig. 3-1. .. Generic Design Scenario	

 46

Fig. 3-2. ... Design Process Input/Output Model 	

 53

Fig. 3-3. The Basic Design Cycle with the Waterfall Model and Basic Cycle of Scientific Inquiry 	

 62

Fig. 3-4. Problem-Design Exploration Model (adapted from Maher et al. 1995)	

 63

Fig. 3-5. .. Alexander’s Design Processes	

 64

Fig. 3-6. .. Original FBS Framework	

 67

Fig. 3-7. ... The Function-Behavior-Structure Framework	

 69

Fig. 3-8. .. The Situated FBS Framework	

 70

Fig. 3-9. ..Theory Development Step 1	

 85

Fig. 3-10. .. Theory Development Step 2	

 86

Fig. 3-11. ... Theory Development Step 3	

 87

Fig. 3-12. .. Theory Development Step 4 – The SCI Framework 	

 88

Fig. 3-13. Two Empirical Strategies for Comparing the FBS and SCI Frameworks	

 94

Fig. 4-1. ... The Function-Behavior-Structure Framework	

 104

Fig. 4-2. .. The Sensemaking-Coevolution-Implementation Framework 	

 107

Fig. 4-3. .. FBS/SCI Agreement Across 13 Items	

 119

Fig. 5-1. ... A Software Design Science Research Program	

 136

Fig. A-1 .. SDLC and Cycle of Scientific Inquiry 	

 154

Fig. A-2 ... The Production/Deduction/Induction Model 	

 172

x

www.manaraa.com

ACKNOWLEDGEMENTS

This work was done with partial support from the Natural Sciences and Engineering Research Council of

Canada and from the University of British Columbia Humanities and Social Science Research Fund. I am

grateful to all those who provided useful feedback on my research and writing (especially J.P. and J.R.).

In addition, special thanks to all those who helped keep me sane and focused throughout the process

(especially D.B., B. C. and O.V.).

xi

www.manaraa.com

For the generations to follow, that they may avoid the insanity that has plagued their ancestors.

	

 	

 	

 	

 	

 	

 	

 	

 	

xii

www.manaraa.com

CHAPTER 1: AN INTRODUCTION TO SOFTWARE

DESIGN SCIENCE

1

www.manaraa.com

1.1 THE SCOPE OF SOFTWARE DESIGN SCIENCE

Eekels (2000, 2001) discusses the stratification of engineering design science across five different levels

of abstraction, juxtaposed to an analogous software design science stratification in Figure 1-1. Level 5,

the lowest level, refers to the design phenomena itself – people working on design projects. Level 4,

“methodics” 1 , refers to the body of design methods and systems of methods used by designers. Level 3,

design science “proper” refers to the study of design practice and design methodics, including

ethnographic research on designers and empirical evaluations of methods. Level 2 refers to the study of

design science proper and design literature, including meta-analyses and studying the usefulness of

various research methods or statistical techniques for use in design science research. Level 1 refers to the

philosophical study of knowledge and science in general.

General Epistemology

Software Design
Epistemology

Software Design
Practice

Software Design
Methodics

Science of Design for
Software Design

General Epistemology

Engineering Design
Epistemology

Engineering Design
Practice

Engineering Design
Methodics

Science of Design for
Engineering Design

2

1

4

3

5

Fig. 1-1. The Stratification of Design Science (adapted from Eekels 2000)

Although software design deals with virtual objects while engineering design deals with physical objects,

Eekels’ stratification of engineering design science appears equally sensible for software design science.

Based on this, I define software design science as follows.

2

1 In this dissertation, a quotation without a page number indicates either that a term is used repeatedly by the cited
source, or that source lacked page numbers, as in some electronic documents.

www.manaraa.com

Software Design Science is the philosophical, theoretical and empirical study of the creation

and modification of software artifacts, including performance (phenomenology), methods,

tools and practices (methodology), and antecedents and outcomes (causality).

When Simon (1996) calls on scientists to develop a “theory of design” and proposes a “Science of

Design” curriculum, he uses “Science of Design” the same way Eekels used “Design Science” – to

indicate the scientific study of the phenomenon called design. Simon further enumerates the following

seven pivotal topics for design science.

1. Design alternative evaluation theories

2. Computational methods for choosing design alternatives

3. Formal imperative and declarative design logics

4. Heuristic search (for design alternatives)

5. Search resource allocation

6. Theories of design process structure and organization

7. Representation of design problems (modeling methods)

Interestingly, many of Simon’s topics embed strong assumptions regarding design process structure and

organization. For example, the first and second items imply that the design process centers on discrete

choice from identifiable alternatives rather than creative generation of a single solution from an infinite

set of possibilities. Similarly, the need for formal design logics imply the primacy of logic over emotion

in designing, and the seventh topic implies that designers create and use representations. Given these

assumptions, the need for theories of the design process’ structure and organization seems paramount.

The reader may note that Simon’s design science topics are split between the third (1, 6) and fourth (2, 3,

4, 5, 7) levels of Eekels’ stratification. Meanwhile, most design literature is normative and inhabits either

the second or fourth levels of Eekels’ stratification; i.e., most design literature consists either of

frameworks for understanding existing literature or specific design methods, tools and practices

(Wynekoop and Russo 1997). Little research has addressed the structure and organization of the design
3

www.manaraa.com

process, or how, exactly, to synthesize and evaluate alternatives (Freeman and Hart 2004; Simon 1996;

Sullivan 2003; Wynekoop and Russo 1995).

1.2 TWO FACTIONS IN DESIGN SCIENCE

After conducting a literature review of topics including design, design research, design science, design

science research, software design, systems design, information systems design, software-intensive

systems design, engineering design, engineering design science, science of design, systems development

methodologies, software development methodologies, software design methods, method engineering,

systems development approaches, design paradigms, design tools, design patterns, design techniques,

project management frameworks, agile development, plan-driven development and amethodical

development, the first apparent adjective describing the design literature is confused. This confusion

manifests itself in two specific, yet rarely articulated, disagreements.

The first disagreement concerns the meaning of “design science.” In the information systems discipline,

“design science research” has been used to differentiate (prescriptive) research, which produces

technological artifacts, from behavioral research, which produces theoretical knowledge (cf., Hevner et

al. 2004; March and Smith 1995; Walls et al. 1992). Design science, then, denotes a research paradigm,

like experimentalism. Contrastingly, in Eekels and Simon’s parlance, design science is a field of inquiry

like psychology, wherein design is the topic of study. Recognizing this, some authors contend that design

science research refers to both “design as research” and “researching design” (Hevner and Chatterjee

2010; Purao et al. 2008). Furthermore, some propose that these two research types overlap and reinforce

each other (Hevner et al. 2004; Purao et al. 2008).

This situation is problematic because overloading a term with two closely related meanings may cause

confusion. Anecdotally speaking, the phrase “this is not design science” on reviews of “researching

design” papers has convinced me that such confusion is real. Of course, this confusion can be avoided by

giving the two meanings of design science research separate names. The term “design science” should be

4

www.manaraa.com

reserved for “researching design” for three reasons. First, the use of design science to denote researching

design predates its use as a research approach (cf. Cross 2001; Simon 1969). For example, Simon (1969)

defines the science of design as “a body of intellectually tough, analytic, partly formalizable, partly

empirical, teachable doctrine about the design process” (p. 113). Second, the English construction “X

science” conventionally denotes the study of X, as in rocket science, neuroscience, political science,

marketing science, environmental science, cognitive science, management science, library science, space

science, earth science, life science, plant science. “Environmental science,” for example, denotes the

study of the environment and environmental problems. To use the same term to indicate using the

environment to produce knowledge would seem strange. By analogy, using design science to describe

“design as research” may seem counterintuitive to people outside of the information systems community.

Third, “design as research” already has a ubiquitous label: “engineering research.”

This distinction, however, requires two qualifications. First, it is in no way intended to denigrate “design

as research.” The merits and drawbacks of this approach are unrelated to the naming issue presently

addressed. Second, it does not imply a sharp distinction between the two. A “researching design” project

may involve building artifacts and a “design as research” project may produce knowledge about design.

Yet, this potential overlap does not justify the two concepts sharing a label any more than possible

overlaps between quantum physics and mechanical engineering (e.g., building the Large Hadron Collider)

justify those fields sharing a label.

The second disagreement concerns the nature of the activity commonly called “design.” On one side is

the view that professionals design by optimizing or “satisficing” a design candidate vis-à-vis known

constraints and objectives (Simon 1996). Design, then, is a form of plan-driven problem-solving, where

an agent seeks a goal state by executing a plan in a field of constraints (Newell and Simon 1972). It is

essentially cognitive – an exercise in logic. On the other side is the view that the designer “reflects in

action … he does not keep means and ends separate … he does not separate thinking from doing” (Schön

1983, p. 69). In other words, understanding the problem and finding a solution are one and the same

5

www.manaraa.com

process. The designers act in a situated way; that is, rather than executing a plan, their actions’

organization “is an emergent property of moment-by-moment interactions between actors, and between

actors and the environments of their action” (Suchman 1987, p. 179). Design, then, is essentially

emergent – comprising continuous interactions between designers and their environment (in which the

details of the problem are housed).

This disagreement manifests in reactions to the Waterfall Model (Royce 1970). The waterfall model is a

description of software development in terms of a series of discreet stages. While the named stages vary,

“planning”, “analysis”, “design”, and “implementation” are common. The Waterfall Model is sometimes

referred to as the Systems Development Lifecycle (SDLC), although this is a contentious issue (see

Appendix A). Though rarely stated, implicit claims that the waterfall model describes design practice

pervade research, teaching and practice. For example, in a well-cited paper in MIS Quarterly, Fitzgerald

(2006) states that “in conventional software development, the development lifecycle in its most generic

form comprises four broad phases: planning, analysis, design, and implementation” (p. 3) and then

describes the presence of these phases in open-source software development. In a popular introductory

MIS textbook, Laudon et al. (2009) state that “systems development … consist[s] of systems analysis,

systems design, programming, testing, conversion and production and maintenance … which usually take

place in sequential order.” Similarly, at the time of writing, the SDLC Wikipedia article states that “SDLC

adheres to important phases that are essential for developers, such as planning, analysis, design, and

implementation.” Moreover, similar Waterfall Model phases are explicitly adopted in the official IEEE

Guide to the Software Engineering Body of Knowledge (Bourque et al. 2004). These examples illustrate

the how influential the Waterfall Model remains and how it is consistent with the ‘design as a cognitive

activity’ view stated above – if “analysis” and “design” are discrete phases, then the design phase is about

solving the problem elucidated in the analysis phase.

In contrast, numerous authors explicitly attack or implicitly undermine the waterfall model and its

underlying separations of planning from doing and problem understanding from problem solving. For

6

www.manaraa.com

example, Schön found evidence indicating that designers do “not keep means and ends separate” or

“separate thinking from doing” (1983, p. 69). Meanwhile, the author generally credited with proposing

the Waterfall Model affirmed that its simplest version “has never worked on large software development

efforts” (Royce 1970, p. 335). Additionally, in a study of “a large scale system development effort”,

Zheng et al. (2007) found that “home-gown methods and ad hoc activities appear to dominate the day-to-

day practices of systems development” (p. 1). In several case studies, Baskerville et al. (2004; 1992)

found evidence of software developers acting in a fundamentally amethodical manner. “Amethodical

systems building implies management and orchestration of systems development without a predefined

sequence, control, rationality, or claims to universality. An amethodical development activity is so unique

and unpredictable for each information systems requirement that even the criteria of contingent

development methods are irrelevant” (Truex et al. 2000, p. 54). Design without “a predefined sequence,

control, rationality” etc. is consistent with the ‘design as an emergent activity’ view.

The purpose of this dissertation is to explore the tension between these two views of design. Doing so

leads to three specific problems, each of which I attempt to address in subsequent chapters.

1.3 THE THREE PROBLEMS IN SOFTWARE DESIGN SCIENCE

In the preceding section I identified a widespread disagreement about the nature of design practice.

Whether design is predominantly cognitive or emergent in practice is an empirical question – the primary

question addressed by this dissertation. However, studying this raises two prerequisite questions.

First, how to operationalize this question in a testable form is not obvious. Empirical design science

research, in general, is fraught with serious methodological difficulties. As it is entirely unclear how to

empirically evaluate the descriptive validity or effectiveness of many design concepts, researchers avoid

such studies, as evidenced by the dearth of empirical research on software design methods identified by

Wynekoop et al. (1997). Consequently, the design research culture appears to have become tolerant of

research that downplays empirical evaluation.

7

www.manaraa.com

Consider, for example, how to gather evidence of the effectiveness of a software design method. The

research question is, what is the effect of method X on project success? Three methodological options are

evident – field study, survey or experiment. Let us assume that team, project and method variables all

influence project success. Even ignoring generalizability issues, an ethnographic field study of a single

project cannot answer this question as it cannot determine if the project would have been more or less

successful without method X. Furthermore, a field experiment cannot work as the same team cannot

complete a single project with two different methods (or once with a method, once without). Changing

either team or project invalidates the conclusions as both variables may influence success as much or

more than the method. Moreover, survey results would be confounded by a host of factors including the

following.

1. It would be impossible to assess exactly how or to what extent real teams adapted or misused the

methods in question.

2. Reasons for choosing a method may be related to the chance of project success (e.g., developers

may choose more effective methods for harder project, hiding their effects).

3. The methods in question may be unpopular in industry.

Similarly, a realistic experiment would be confounded by team and context. Assuming near limitless

resources, we may recruit hundreds of development professionals and randomly assign them to teams (we

must have teams as most commercial development is team-based). Suppose that teams are divided into

treatment group (Method A) and control group (Method B, or no method). All teams must work on the

same problem. However, simply providing a problem description would invalidate the results because

understanding the problem is part of the methods (see ch. 3). Therefore, teams must determine goals and

requirements through stakeholder interaction. Obviously, all teams must interact with the same

stakeholders, or the “different problems” confound reappears. However, stakeholders’ problem

conceptualizations will be polluted by each successive question-answer session, such that treatment-group

teams benefit from the investigations of control-group teams and vice versa. This pollution via

stakeholders confounds the difference between the methods in terms of requirements elicitation
8

www.manaraa.com

effectiveness. I cannot conceive of an experimental design that avoids these confounds. Therefore,

regardless of the research methodology, scientifically testing the effectiveness of a design method is

difficult, if not impossible, at the epistemological standards generally employed in behavioral research.

Returning to the specific case of whether design is cognitive or emergent, this is not a causal hypothesis

that can be subjected to experimental evaluation. ‘Design is a cognitive(/emergent) activity’ is an abstract

ontological statement. It is a high-level proposition about real world processes. As such, operationalizing

it in an empirically testable form is a significant challenge.

Second, the underlying phenomenon of interest, design, is not consistently defined (ch. 2). Without a clear

articulation of the domain of inquiry, it would be difficult to say precisely what is meant by “design is

cognitive” or “design is emergent.” Lack of a clear definition of design would also hamper the

operationalization of these concepts.

1.4 SUMMARY OF CONTRIBUTION

Of the seven pivotal topics in design science elucidated by Simon (1996), perhaps none has received as

little attention as theories of design process structure and organization. Hence, the purpose of this

dissertation is to study empirically the process and organization of the design process. This involves three

challenges:

1. Articulating exactly what is meant by “design” and specifying the domain of design phenomena

2. Fleshing out conflicting views of design practice and operationalizing them in a testable form

3. Empirically testing conflicting views of design practice and providing a theory of design process

structure and organization consistent with the more accurate view.

The objective of this dissertation is to address each of these challenges. Chapter Two addresses the lack of

common language describing design phenomena by formally defining design and situating it in a precise

conceptual model of software design projects. This provides a working nomenclature for the subsequent

9

www.manaraa.com

studies and design science more generally. Chapter Three attenuates the difficulties of empirical work by:

1) organizing design literature through underlying conflict concerning whether design is a cognitive or

emergent phenomenon; 2) operationalizing these two views using two contrasting, testable software

design process theories. This facilitates not only empirically testing these particular theories but also

evaluating other design related concepts with these process theories. Chapter Four reports a survey study

testing the software design process theories. The results support the proposition that design is an emergent

phenomenon, and the explanatory validity of a theory of the design process’ structure and organization:

The Sensemaking-Coevolution-Implementation Framework. Following these contributions, Chapter Five

proposes a roadmap for the next decade of software design science research.

10

www.manaraa.com

CHAPTER 2: A PROPOSAL FOR A FORMAL

DEFINITION OF THE DESIGN CONCEPT1

11

1 A previous version of this paper appeared in the book Design Requirements Engineering: A Ten-Year Perspective,
Lecture Notes in Business Information Processing, Volume 14. Springer Berlin Heidelberg, 2009, p. 103-121

www.manaraa.com

2.1 INTRODUCTION

There have been several calls for addressing design as an object of research. Freeman and Hart call for a

comprehensive, systematic research effort in the science of design: “We need an intellectually rigorous,

formalized, and teachable body of knowledge about the principles underlying software-intensive systems

and the processes used to create them” (Freeman and Hart 2004, p. 20). Simon (1996) calls for

development of a “theory of design” and gives some suggestions as to its contents. Yet, surprisingly, it

seems no generally-accepted and precise definition of design as a concept is available.

A clear understanding of what design means is important from three perspectives. From an instructional

perspective, it seems obvious that any designer’s education ought to include providing a clear notion of

what design is. Furthermore, better understanding the meaning of design will inform what knowledge

such education could include.

From a research perspective, in any theoretical or empirical work in which design is a construct, a clear

definition will help ensure construct validity. Furthermore, a clear understanding of the meaning of design

will facilitate developing measures of design-related constructs, such as design project success. Moreover,

building a cumulative tradition of design research can benefit from a well-accepted definition of design,

the alternative being different theories defining design differently, or not at all.

From a (software design) practitioner’s perspective, a clear definition of design can help organize, share

and reuse design knowledge. Such sharing can enhance software project success and software

development productivity. Furthermore, understanding the elements of design would be useful in

determining the issues and information relevant to the process of design and in planning this process.

Given the potential value of a clear definition of design, our objective here is to suggest such a definition.

We first seek to answer the question: what are the important elements of design as a phenomenon? We

then seek to situate design in a network of related concepts.

12

www.manaraa.com

The paper is organized as follows. First, we synthesize a definition of design by applying concepts and

suggestions in existing literature (§2.2). We then evaluate the proposed definition in Section 2.3. Section

2.4 situates our view of design in a conceptual model of software design projects. In Section 2.5, we

demonstrate how the proposed definition and conceptual model of design can be applied to indexing

design knowledge for reuse and classifying design approaches, respectively. Finally, we discuss the

implications of our definition of design for current themes in software design and requirements research

(§2.6).

2.2 PROPOSING A FORMAL DEFINITION OF DESIGN

2.2.1 Design in the Literature

We conducted a review of existing definitions of “design” in the literature. This review combined

snowball and theoretical sampling. I.e., we began by examining definitions of design in notable works on

the subject drawn from our own experiences. Where authors referenced other works concerning aspects of

design, we investigated these cited works and so on. To broaden the sample, we also conducted a library-

shelf study, i.e., identifying physical shelves in an academic library likely to contain books from different

disciplines that define design, and checking each book. Again, we investigated cited works. We concluded

the review when subsequent definitions failed to uncover any new themes or concepts.

A list of definitions we examined is provided in Appendix B. We analyzed the definitions in three ways.

First, we identified the concepts that were common to several definitions (Table 2-1). We then analyzed

each definition and found that each had serious errors (discussed below). We found that all definitions

included at least one type of error. The detailed analysis is provided also in Appendix B. Finally, we

identified four main areas of disagreement among the definitions (discussed below).

Some of these areas of agreement appear problematic. First, some definitions include desirability criteria

in their definitions, as evidenced by words like “optimally” (Accred. Board, 1988) and “optimizing” (van

Engers et al. 2001). Just as one does not have to run in the practiced form of a professional marathoner for

13

www.manaraa.com

their action to be called “running,” one does not have to design optimally for their action to be called

“designing.” Second, organizing does not necessarily constitute design, for example, when someone

returns books to their proper shelves in a library, one is organizing the books into a pre-designed

arrangement rather than actively performing a design task. Third, four definitions state or imply that

design is strictly a human phenomenon. However, machines can also design objects (e.g. the design of

processors using genetic algorithms (Bradel and Stewart 2004). Some research indicates that animals can

also design objects (Breuer et al. 2005; Mulcahy and Call 2006). Fourth, while many designers are surely

creative, not all design need involve creativity. For example, design might involve relatively minor

modifications to a previously created design.

Table 2-1. Frequency of Common Concepts in Analyzed Definitions

Concept Frequency
Design as a process 11
Design as creation 11
Design as planning 7
Design as a physical activity (or as including implementation) 7
System (as the object of the design) 7
Design as being deliberate, or having a purpose, goal or objective 7
Design as an activity, or a collection of activities 7
Design as occurring in an environment (or domain/situation/context) 7
Artifact, as the object of the design 5
Needs or requirements 5
Design as a human phenomenon 5
Design as organizing 4
Parts, components or elements 4
Constraints or limitations 3
Process (as the object of design) 2
Design as creative 2
Optimizing 2
Design as a mental activity 2
Resources 2

Finally, we identified four areas of disagreement. First, different objects of design arise: system, artifact

and process. Second, disagreement exists concerning the scope of design: where or when a design begins

14

www.manaraa.com

and ends. Third, some definitions indicate that design is a physical activity, others a mental activity.

Fourth, some disagreement concerns the outcome of design: is it a plan, an artifact, or a solution?

2.2.2 Suggesting a Definition of Design

In this section, we develop our proposed definition of design. First, Eekels (2000) differentiates between

the subjects and objects of design. The subject of the design is the (often human) agent that manifests the

design. The design object is the thing being designed. Design outcomes such as an artifact, a system or a

process that appear in some existing definitions are encompassed here by the more general term, design

object.2

Some definitions mention parts, components or elements of which the design object is, or is to be,

composed. Obviously, all artificial physical things are made from other things. We term the lowest level

of components primitives. Similarly, but perhaps less obviously, if we assume that atomic conceptual

things, such as single thoughts or ideas, are not designed (but are discovered or just are available), then

all conceptual things that are designed are made from other conceptual things. Therefore, all design

involves primitives, which are, or can be, assembled or transformed to create a design object3. March and

Smith note that “[t]echnology includes...materials, and sources of power” (1995, p. 252). Materials and

sources of power would be included in the set of primitives.

The outcome of a design effort is not necessarily the design object itself, but may be a plan for its

construction, consistent with the definitions that characterize design as planning rather than building. The

common factor here is that the agent specifies properties of the design object: sometimes as a symbolic

representation, as in an architectural blueprint, sometimes as a mental representation, as in a picture in a

15

2 Note: often the object is called an artifact, when designed by humans. The more general term object allows (in
principle) for non-human agents such as animals and computers.

3 What the set of available primitives is can be a relative issue. A designer might be given a set of components, or
component types, where each might be in turn composed from lower level components. We consider primitives the
set of component-types available to the designer, independent of whether they are natural, or the outcome of
previous design. Furthermore, even if the components are not yet available, a designer might proceed assuming they
will be available. The assumptions made about these components will become requirements for their design.

www.manaraa.com

painter’s mind, and sometimes as the artifact itself, as in a hand-carved boomerang. We call the specified

properties of the design object a specification. More specifically, a specification is a detailed description

of a design object’s structural properties, namely, which primitives are assembled or modified and, if

more than one primitive is used, how they are linked. The specification may be purely mental, provided in

a symbolic representation, presented as a physical model, or even manifested as the object itself. This

notion of specification agrees with the idea that design is the activity that produces “a description of the

software’s internal structure” (Bourque and Dupuis 2004, p. 1-3).

Practically speaking, a specifications document might include desired behaviors as well as structural

properties. From the perspective of this paper, these desired behaviors are requirements – they are not

strictly part of the specifications. The object’s behavior emerges from the behavior of the individual

components and their interactions. (By behavior we mean the way the object responds to a given set of

stimuli from its environment, including agents who interact with the object.)

Churchman (1971) points out that “Design belongs to the category of behavior called teleological, i.e.,

“goal seeking” behavior” (p. 5). Many of the definitions we surveyed also included concepts such as

“goal,” “purpose” or “objective.” While the goal may not be explicit or well defined, design is always

intentional, never accidental. For example, a social networking web application can be designed without

having an explicit goal, based on the vague idea that it would be useful and fun to have an online space

where people could connect. We would still say the web application was designed. On the other hand,

accidental or unintentional discoveries are not designed. Thus, goals are inherent to design insofar as a

designer must have intentionality. However, this should not be interpreted as a requirement that a design

goal is or can be formally or explicitly articulated.

Many definitions characterize the design process as occurring within an environment, domain, situation or

context. Design involves two different environments: the environment of the design object, and the

environment of the design agent. As pointed out by Alexander, “every design problem begins with an

effort to achieve fitness between two entities: the form in question and its context” (Alexander 1964, p.
16

www.manaraa.com

15). Clearly, the design process or activity also occurs within some environment, even if that

environment is difficult to characterize. March and Smith mention the “organizational setting” (March

and Smith 1995, p. 252) and Hevner et al. refer to “organizational context” (Hevner et al. 2004, p. 77).

For instance, the software created by a developer is intended to operate in a different environment than

the developer operates in. The qualifier “organizational” is not always valid for the environment of the

artifact because the environment does not have to be an organization (e.g. the environment of a

pacemaker is a human body).

Many definitions also mention needs or requirements and limitations or constraints. The issue of

requirements needs clarification. If we interpret requirements strictly as a formal requirements document

or as a set of mathematically expressible functions (as in Gero 1990) the system is to perform, then

requirements are not absolutely necessary. The primitive hunter who fashions a spear from a branch

specified the spear’s properties by creating it – without an explicit reference to formal requirements (let

alone mathematically definable functions). However, in the sense that every designer expects or desires

the design object to possess certain properties or exhibit certain behaviors, requirements are inherent to

design. Requirements are a major construct in requirements engineering and software design (Kruchten

2003; Siddiqi and Shekaran 1996).

Similarly, all design must involve constraints. Even if the design agent had infinite time and resources,

physical design is still constrained by the laws of physics, virtual design by the speed and memory of the

computational environment, and conceptual design by the mental faculties of the design agent.

Constraints are a major construct in engineering design (Pahl and Beitz 1996; Simon 1969). However,

like requirements, constraints may not be explicit.

The above analysis leads to the following suggestion for the definition of design (modeled in Figure 2-1).

Table 2-2 further describes each concept in the definition.

17

www.manaraa.com

Design

(noun) a specification of an object, manifested by an agent, intended to accomplish goals, in

a particular environment, using a set of primitive components, satisfying a set of

requirements, subject to constraints;

(verb, transitive) to create a design, in an environment (where the designer operates)

Fig. 2-1. Conceptual Model of Design (Noun)

Table 2-2. Definitions of Design Concepts

Concept Meaning

Design
Specification

A specification is a detailed description of an object in terms of its structure, e.g., the primitives used and their
connections.

Design
Object

The design object is the entity (or class of entities) being designed. Note: this entity is not necessarily a physical
object.

Design Agent The design agent is the entity or group of entities that specifies the structural properties of the design object.
Environment The object environment is the context or scenario in which the object is intended to exist or operate (used for the

noun form). The agent environment is the context or scenario in which the design agent creates the design (used
for the verb form).

Goals Goals describe the desired impacts of design object on its environment. Goals are optative (i.e. indicating a
wish) statements that may exist at varying levels of abstraction (van Lamsweerde 2001).

Primitives Primitives are the set of elements from which the design object may be composed (usually defined in terms of
types of components assumed to be available).

Requirements A requirement is a structural or behavioral property that a design object must possess. A structural property is a
quality the object must posses regardless of environmental conditions or stimuli. A behavioral requirement is a
required response to a given set of environmental conditions or stimuli. This response defines the changes that
might happen in the object or the impact of these changes on its environment.

Constraints A constraint is a structural or behavioral restriction on the design object, where “structural” and “behavioral”
have the same meaning as for requirements.

Design Specificationis a

ObjectGoals Constraints

Environment Requirements

of an

is intended to accomplish

is situated in an satisfies

is subject to

Primitives

is composed of

Agent

creates

18

www.manaraa.com

Considering design as a process (depicted in Figure 2-2), the outcome is the specification of the design

object. The goals, environment, primitives, requirements and constraints are, in principle, the inputs to the

design process; however, often knowledge of these may emerge or change during the process.

Nevertheless, the design process must begin with some notion of the object’s intended environment, the

type of object to design and intentionality – by this we simply mean that design cannot be accidental.

Finally, if the type of design object changes significantly (e.g. from a software system to a policy

manual), the existing design effort is no longer meaningful and a new design effort begins. The possibility

of changing information is related to the possibility that the design process involves exploration. It also

implies that the design may evolve as more information is acquired.

Fig. 2-2. Context-level Conceptual Model of Design (Verb)

2.2.3 What Can Be Designed and Examples of Design Elements

“What can be designed?” is a difficult ontological question, one we are not sure we can answer

completely. However, we can imagine at least six, possibly overlapping, classes of design objects:

• physical artifacts, both simple, such as boomerangs (single-component), and composite, such as

houses (made of many types of components)

• processes, such as business workflows

Specification
of ObjectDesign

Requirements

Constraints

Primitives

Environment

Intentions

Agent

enacted by

Goals

Type of Object

input to
modified based on design

always available before design begins
might not be available before design begins

results in

evolve into

19

www.manaraa.com

• symbolic systems, such as programming and natural languages

• symbolic scripts, i.e., documents written in symbolic systems, such as essays and software

• laws, rules and policies, such as a criminal code

• human activity systems, such as software design projects, committees and operas

Clearly, the nature of a specification depends on the class of design object since the structure and

components of, for example, a law would be very different from those of a rocking chair. For simple

artifacts, such as a one-piece racket, the specification would include structural properties such as shape,

size, weight and material. For a composite physical artifact, such as a desk, the specification would

include the primitive components and how they are connected. Since a process is ‘a set of partially

ordered activities aimed at reaching a goal’ (Hammer and Champy 1993), a specification of a process may

identify the activities and their order, although other approaches are possible – e.g. using Petri Nets or

states and events (Alast 2000; Soffer and Wand 2004). For a symbolic system, the specification may

include syntax, denotational semantics and (for a spoken language) pragmatics. A symbolic script can be

specified by symbols and their arrangement. A policy or law can be specified in some (possibly formal)

language. The specification of a human activity system might include agents, roles, tasks, artifacts, etc.

and their relationships.

Furthermore, all elements from the definition of design may vary across object types. Table 2-3 provides

examples of each design element for each class of design object.

2.2.4 Scope of Design

According to the perspective on design expressed in this paper, design (as a verb) is the act of specifying

the structural properties of an object, either in a plan or in the object itself. Because design is an activity,

rather than a phase of some process, it may not have a discernible endpoint. Rather, it begins when the

design agent begins specifying the properties of the object, and stops when the agent stops. Design may

20

www.manaraa.com

begin again if an agent (perhaps a user) changes structural properties of the specification or design object

at a later time. This defines the scope of the design activity.

Table 2-3. Examples of Design Elements

Object Type Process Symbolic system Law/policy Human activity
system

Physical
artifact

Symbolic Script

Object loan approval a special purpose
programming
language

criminal code a university course office
building

a software system

Agent loan officer team that creates
the language

legal experts and
lawmakers

instructor architect programmer

Goals accurately
estimate risk
level of loan

provide a means
of expressing
software
instructions

provide a legal
framework for
dealing with
crimes

facilitate learning
and development of
students in a given
area

provide office
space for a
business

support
management of
customer
information

Object
Environment

bank
administrative
system

computing
environment on
which code will
execute

national legal
and
constitutional
system

university (with all
resources available)

business
district of a
given city

personal
computers and
specific operating
systems

Requirements provide a
decision with
justification;
generate audit
trail for decision
process

be easily
readable,
minimize coder
effort, fit certain
applications

define crimes and
punishments
clearly; be
unambiguous

learning objectives include open
floor plan
offices, be
energy
efficient

maintain customer
information,
identify customers
with certain
characteristics

Primitives various actions
that need to be
taken, e.g.,
assessing the
value of a
collateral

the C
programming
language
instructions

English words as
used in legal
documents

various common
teaching actions
(presentations,
laboratory sessions,
tests)

building
materials,
interior
decoration
materials

the instructions in
the symbolic
system
(programming
language)

Constraints bank approval
rules and risk
policies (e.g.
debt-service
ratio allowed)

cannot violate
some
programming
languages related
standards

must not violate
the country’s
constitution and
international
laws

prior knowledge
students have,
number of class and
laboratory hours
available

comply with
building code,
cost less than
a given
budget

must be able to run
on a given
hardware
configuration with
a maximum given
delay

Our definition does not specify the process by which design occurs. Thus, how one interprets this scope

of activities in the design process depends on the situation. If a designer encounters a problem and

immediately begins forming ideas about a design object to solve the problem, design has begun with

problem identification. If requirements are gathered in reaction to the design activity, design includes

requirements gathering. In contrast, if a designer is given a full set of requirements upfront, or gathers

21

www.manaraa.com

requirements before conceptualizing a design object, requirements gathering is not part of design.

Similarly, if the construction agent refines the specification (a possible occurrence in software

development), construction is part of design, but if the designer creates a complete specification on paper

that the construction agent follows deterministically, construction is not part of design. Any activity,

including testing and maintenance, that involves modifying, or occurs within an effort to modify, the

specification is part of design. Therefore, design practice may not map cleanly or reliably into the phases

of a particular process, such as the waterfall model (Royce 1970) or Systems Development Lifecycle

(Bourque and Dupuis 2004).

This distinction has particular bearing for software design, where a significant debate over the scope of

design exists. On the narrow-scope side, Bourque and Dupuis (2004), for example, define design as:

The software engineering life cycle activity in which software requirements are analyzed in

order to produce a description of the software’s internal structure that will serve as the basis

for its construction, (p. 1-3).

On the broad-scope side, Freeman and Hart (2004), for example, argue that:

Design encompasses all the activities involved in conceptualizing, framing, implementing,

commissioning, and ultimately modifying complex systems—not just the activity following

requirements specification and before programming, as it might be translated from a stylized

software engineering process, (p. 20)

One way of interpreting this debate is as follows. Proponents of a narrow scope of the design process

posit that all inputs to design (goals, environment, primitives, requirements and constraints) are fully

defined before any property of the object has been decided. Furthermore, the design phase results in a full

specification of all relevant object properties before coding begins. In contrast, proponents of a broad

scope of design recognize that properties of the object are often defined during requirements elicitation,

coding or even testing. Moreover, design may begin without complete knowledge of all information

needed and the process may include obtaining additional information. Which side of this debate better
22

www.manaraa.com

reflects software design practice is an empirical question (see ch. 4); the proposed definition of design is

compatible with either.

2.3 EVALUATING THE PROPOSED DEFINITION OF DESIGN

In this section we evaluate our definition of design, based on the degree to which it:

• Satisfies a set of four definition evaluation criteria (Appendix B)

• Incorporates areas of agreement in existing definitions (Tables 2-1 and 2-4)

• Resolves disagreements in existing definitions (§2.2.1)

• Appears usable and useful

2.3.1 Definition Evaluation Criteria

Coverage. Whether a definition covers all phenomena in the domain to which it applies, and nothing else,

is an empirical question akin to a universal hypothesis. Therefore, the definition can be disproven by a

counter example, but never proven. Thus, we evaluated the definition against a diverse set of examples

(e.g. Table 2-3) and found that we could describe the examples using the proposed seven elements of

design.

Meaningfulness. A definition is meaningful when all its terms have clear meanings. We have explicitly

defined all terms having imprecise everyday meanings in Table 2-2.

Unambiguousness. A definition is unambiguous when all its terms have unique meanings. All terms not

explicitly defined are intended in the everyday sense, that is, as defined in the dictionary. Where terms

have multiple definitions, the intention should be clear from the context.

Ease of Use. The proposed definition is presented in natural language, and is segmented into clearly

distinct elements, to ensure clarity for both practitioners and researchers. It is consistent with everyday

23

www.manaraa.com

notions of design and differentiates design from related terms such as invention, decision-making, and

implementation. Table 2-3 provides examples of the elements of design to facilitate use of the definition.

2.3.2 Areas of Agreement

The relationship of each area of agreement to the proposed definition is analyzed in Table 2-4. Aspects of

design mentioned in the literature that we demonstrated should not be included are marked “discounted.”

As can be seen in the table, all areas are explicitly or implicitly accommodated.

Table 2-4. Incorporation of Areas of Agreement

Concept Consistency with Proposed Definition

Design as a process implicit in the verb form of the proposed definition
Design as creation explicit in the verb form of the proposed definition
Design as planning encapsulated by the design ‘specification’ (however,

planning may be lightweight)
System (as the object of the design) included in the more abstract term, design object
Design as being deliberate, or having a purpose, goal or objective explicitly included as goals
Design as an activity, or a collection of activities implicit in the verb form of the proposed definition
Design as occurring in an environment (or domain/situation/context) explicitly included as environment
Artifact, as the object of the design included in the more abstract term, design object
Needs or requirements explicitly included as requirements
Design as organizing discounted
Parts, components or elements explicitly included as primitives
Design as a human phenomenon discounted
Constraints or limitations explicitly included as constraints
Process (as the object of design) included in the more abstract term, design object and

listed as a class of design object
Design as creative discounted
Optimizing discounted
Resources implicit in primitives and the verb form (since creating

something always uses resources)

2.3.3 Areas of Disagreement

The proposed definition addresses each of the four areas of disagreement among existing definitions (see

§2.2.1). First, different objects of design arise: system, artifact and process. We addressed this by using

the more general term, design object and suggesting major categories of such objects. Second,

disagreement exists concerning the scope of design: where or when a design begins and ends (resolved in

24

www.manaraa.com

§2.2.4). Third, disagreement exists as to whether design is a physical or mental activity. Clearly, design

(for humans) is a mental activity, albeit one that may be supported by physical activities (such as drawing

diagrams or constructing physical models)4. The fourth disagreement, concerning what can be designed,

was addressed in §2.2.3.

2.3.4 Usefulness and Usability

We suggest that the proposed definition of the design concept can inform practice in several ways. First,

the elements of the definition (excluding agent) suggest a framework for evaluating designs: 1)

specification – is it complete? 2) object – did we build the right thing? 3) goals – are they achieved? 4)

environment – can the artifact exist and operate in the specified environment? 5) primitives – have we

assumed any that are not available to the implementers? 6) requirements – are they met, i.e., does the

object possess the required properties? 7) constraints – are they satisfied? Of course, answering these

questions may be nontrivial or even impossible in some contexts. Second, the breakdown of design into

elements can provide a checklist for practitioners. Each element should be explicitly identified for a

design task to be fully explicated. For example, a project team may not be able to provide consistent and

accurate estimates of design project costs if crucial elements are unknown. Third, a clear understanding of

design can prevent confusion between design and implementation activities. Such confusion may lead to

poor decisions and evaluation practices. For example, a manager who needs to hire team members for a

project may view programmers only as implementers (not understanding the design involved in

programming) and thus hire employees with the wrong sorts of skills. Fourth, the elements of design can

also be used to specify and index instances of design knowledge for reuse (discussed next).

25

4 This mental-physical disagreement should not be confused with the cognitive vs. emergent disagreement discussed
in Chapter Three. “Emergent” does not imply “physical”, or vice versa.

www.manaraa.com

2.4 A CONCEPTUAL MODEL FOR DESIGN PROJECTS

We now propose a conceptual model (a set of concepts and their relationships) for design-related

phenomena5. Here, we limit our discussion to design within the information systems field. Specifically,

we view design as an activity that occurs within a complex entity, which can be thought of as a human

activity system. Alter (2006) defines a work system as “a system in which human participants and/or

machines perform work using information, technology, and other resources to produce products and/or

services for internal or external customers” (p. 11). Expanding on this concept, we suggest that a project

is a temporal trajectory of a work system toward one or more goals; the project ceases to exist when the

goals are met or abandoned. Following this, we define a design project as a project having the creation of

a design as one of its goals. This relationship is shown in Figure 2-3.

Fig. 2-3. Design Project Generalization Relationship

Note: Shaded arrow indicates relationship; unshaded arrow indicates generalization.

The design project is the central concept of our conceptual model (depicted in Figure 2-4). Each concept

is defined and each relationship is discussed in the following section (except the concepts from the

definition of design, defined in Table 2-2).

Human Activity
System

Work System Design Project

Project

is a temporal
trajectory of a

26

5 We note that to define a conceptual model of a domain, one needs to define the concepts used to reason about the
domain (and their relationships). Such a conceptual structure is an ontology. Hence, we view our proposal as a
conceptual model and as an ontology of concepts.

www.manaraa.com

Fig. 2-4. Design Project Conceptual Model

Note: shaded arrows indicate reading direction, unshaded arrows indicate generalization,

shaded diamonds indicate composition; all relationships many-to-many unless otherwise

indicated.

More Notes. 1) The relationships between the definition-of-design elements (e.g. constraints) and the

other design project conceptual model elements (e.g. knowledge) are omitted to maintain readability. 2)

The relationships between design approach and elements other than design project are unclear at this time

and left for future work. 3) All shown concepts are implicitly part of the work system within which the

design project takes place. 4) Creates is shown in this diagram as a relationship between design team and

design, whereas Figure 2-1 depicted creates as a relationship between agent and specification. In a design

project, the design team is the agent. Furthermore, since the design project conceptual model includes the

design concept, the model shows that the design team creates the design, which is a specification.

Design Project

Designer

Design Team

1..*
1

works on

Stakeholder

has stake in

Design

creates
produces

Design
Approach

instantiates 1

*

Design
Worldview

adopts

Knowledge

produces

uses
Project

Environment

operates in

*

1

Metric

 Activities

engages in
measures properties of

measures properties of

1

1..*

 Artifacts

produces

Technology

uses

 Skills

has

Specification

ObjectGoals Constraints

Object
Environment Requirements

of an

is intended to accomplish

is situated in satisfies

is subject to

Primitives

is composed of

uses

1 1
1

27

www.manaraa.com

2.4.1 Discussion of Concepts

Alter (2006) identifies nine elements of a work system:

• Work practices

• Participants

• Information

• Technologies

• Products and services the work system produces

• Customers for those products and services

• Environment that surrounds the work system

• Infrastructure shared with other work systems

• Strategies used by the work system and the organization

Since a project is a trajectory of a work system, and a design project is particular type of project, a design

project should both share all the work system elements and have properties not necessarily shared by

other projects and work systems. Here, we discuss each element of the conceptual model, the

relationships among elements, and the correspondence between elements of the conceptual model and

elements of a work system. The conceptual model includes all the work system elements and, in addition,

several elements specific to design projects, which we point out.

Activities. Activities include the specific behaviors engaged in by participants in the design project.

These may include interviewing stakeholders, modeling requirements, evaluating proposed design, etc.

Activities exist at differing levels of granularity; for instance, modeling can be further divided into sub-

activities such as writing scenarios, drawing entity relationship diagrams and then comparing the data

models with the scenarios.

Participants and Stakeholders. Participants are the “people who perform the work” (Alter 2006, p. 13).

Since individual participants vary among projects, we use the generic label, stakeholder. A stakeholder is

28

www.manaraa.com

a person or entity with an interest in the outcome of the project (Freeman 1984). Design projects may

have different types of stakeholders – we specifically include the designer type for obvious reasons.

Designer. A designer is an agent that uses his or her skills to directly contribute to the creation of a

design. This concept is specific to design projects.

Knowledge. Stakeholders may have and use knowledge during their involvement with the design project.

In our interpretation, knowledge includes the kinds of information and knowhow used by stakeholders in

a design project. To define knowledge, we extend the definition suggested by (Bera and Wand 2009):

given the states of the agent and the environment, knowledge is the information that enables “the agent to

select actions (from those available to the agent) so as to change the current state to a goal state” (p. 7).

The design project can create knowledge as it proceeds – a tenant of the design science research paradigm

(Hevner et al. 2004).

Skill. A skill is a combination of mental and/or physical qualities that enable an agent to perform a

specific action. Skills differ from knowledge as knowledge enables one to select actions.

Technologies. Technologies are artificial, possibly intangible, tools and machines. Technologies can be

used by the design team to create the design.

Design. The design, defined above, is the product that the design project aims to produce. This concept is

specific to design projects.

Environment and Infrastructure. Figure 2-4 combines Alter’s environment and infrastructure

constructs because both represent aspects of the project that are outside its scope (Alter 2006). Checkland

(1999) argues that, to properly model a system, the modeler must first model the system it serves. This

wider system served by a design project is its environment. Alter (2006) argues: “the work system should

be the smallest work system that has the problems or opportunities that are being analyzed” (p. 22).

Following this, then, the environment is the smallest coherent system served by the design project.

29

www.manaraa.com

The environment construct is a potential source of confusion because Design Project and Design both

have environments. The design project’s environment is the work system in which the project occurs; the

design’s environment is the context in which in the object is to operate.

Design Approach and Strategy. A design approach is a set of beliefs about how design (and related

activities) should be done (This should not be confused with the slightly different usage of the same term

by Iivari et al. 2000). Examples include The Unified Software Development Process (Jacobson et al.

1999), and the Systems Development Lifecycle (Bourque and Dupuis 2004). “Strategies consist of the

guiding rationale and high-level choices within which a work system, organization, or firm is designed

and operates” (Alter 2006, p. 14). As a design approach contains rationale and is implemented as choices,

it corresponds to Alter’s strategy construct. A design project may explicitly instantiate a formal design

approach by using some or all of its elements. If a broad scope of design is taken (§2.2.4), a design

approach can refer to the entire development process from problem identification to implementation and

maintenance.

We have adopted the more general term design “approach” instead of “process” or “methodology”

because “design processes” often contain much more than sequences of activities and “methodology” is

used both as a formal word for ‘method’ and as the systematic study of methods. This concept is specific

to design projects.6

Design Team. All designers involved in a project comprise the design team. The design team engages in

activities and uses technologies to create the design and other (intermediate) artifacts. This concept is

specific to design projects.

30

6 In hindsight, these differences are overwhelmed by the inconsistent, often interchangeable usage of “method,”
“methodology,” “approach,” “paradigm,” etc. in the literature. At this time, no comprehensive dissection of the
ontological relationships among these terms is available. For our purposes, any set of optative beliefs concerning
design practice is a “design approach.” Meanings of similar terms, used below, should be clear from their context.

www.manaraa.com

Artifacts. In this model, artifact is used in the broad, anthropological sense of any object manufactured,

used or modified by agents in the design project. Examples include conceptual models, software

development environments, whiteboards, and e-mails. (This is not to be confused with an artifact that is

the object of design.)

Metric. A metric is a way or standard of taking a measurement, where measurement refers to a process of

assigning symbols (often numbers) to an attribute of an object or entity and also the symbols assigned

(Fenton 1994; Finkelstein 1984; Roberts 1979). In the case of a design project, metrics are used for

evaluating specifications, objects, the project, etc.

Design Worldview. A worldview or (more precisely) Weltanschauung is a way of looking onto the world.

It is sometimes used in social sciences to indicate a set of high level beliefs through which an individual

or group experiences and interprets the world. As a precise definition of this concept is elusive, we

suggest some possibilities for classifying worldviews in the design context (Table 2-5). Worldviews are

not mutually exclusive, i.e., some design projects may explicitly adopt one or more design

Weltanschauung. However, even without such an explicit view, every project participant brings a view of

design to the project, and the combination of these views comprises the project’s collective

Weltanschauung. This concept is not necessarily common to all work systems.

Table 2-5. Identified Design Weltanschauung

Weltanschauung Description Proponents / Examples

Problem Solving Design can be seen as an attempt to solve a known problem, a view characterized
by the beliefs that a problem exists and is identifiable and that the success of a
design is related to how well it solves the problem.

(Hevner et al. 2004;
Simon 1996), the
engineering literature

Problem Finding Design can be seen as an attempt to solve an unknown problem, implying that
understanding the problem is part of the design process.

(Polya 1957; Schön
1983)

Epistemic Design can be seen as a learning process where actions that can lead to
improvements to the current situation (in the eyes of stakeholders) are discovered.

(Checkland 1999)

Inspiration Design can be seen as a result of inspiration, i.e., instead of beginning with a
problem, design begins with an inspiration of the form ‘wouldn’t it be great if....’

(Kessler 2007)

Growing Design can be seen as growing an object, progressively improving its fit with its
environment and purpose.

(Beck 2005; March and
Smith 1995)

31

www.manaraa.com

2.4.2 Evaluation of the Conceptual Model of Design Projects

To evaluate the set of concepts underlying the proposed conceptual model, we use evaluation techniques

suggested for ontologies. Ontology evaluation can proceed in several ways. The competency questions

approach involves simultaneously demonstrating usefulness and completeness by analytically proving

that the ontology can answer each competency question in some question set (Grüninger and Fox 1995).

The ontology is then considered complete with respect to that question set. In contrast, (Noy and Hafner

1997) suggests two dimensions of ontology quality: coverage and usefulness. Coverage can be

demonstrated by comparing an ontology to a reference corpus: terms in the corpus that do not fit into the

ontology indicate lack of coverage. Furthermore, “An important way of evaluating the capabilities and

practical usefulness of an ontology is considering what practical problems it was applied to” (Noy and

Hafner 1997, p. 72).

Since the proposed “ontology” is not intended to answer particular questions, evaluation with respect to

coverage and usefulness seems preferable. Assessing the conceptual model’s coverage is beyond the

scope of this paper; however, a possible approach is evident. By surveying a range of design approaches,

e.g. The Rational Unified Process, Agile Methods, The Waterfall Model, The Spiral Model, etc., a list of

design concepts can be generated and compared to the proposed conceptual model. Coverage can be

measured by the extent to which these revealed concepts match the proposed concepts (usually as

instances of the generic concepts suggested above).

We address usefulness in Section 2.5.2 by demonstrating how the conceptual model can be applied in

principle to the practical problem of classifying and contrasting design approaches.

2.5 POTENTIAL APPLICATIONS

In this section we discuss possible applications of the proposed definition of design and of the design

project conceptual model. First, we suggest the use of the elements of the definition of design to classify

32

www.manaraa.com

and index design knowledge. Second, we discuss the use of the design project conceptual model for

comparing and classifying approaches to software design.

2.5.1 Application 1: Design Knowledge Management System

The importance of reuse in software development has been widely recognized. Mili et al. (1995) states

that software reuse “is the (only) realistic opportunity to bring about the gains in productivity and quality

that the software industry needs.” Ambler (1998) suggests a number of reuse types in software

engineering, divided into two broad categories: code reuse and knowledge reuse.

Code reuse includes different approaches to organize actual code and incorporate it into software (e.g.

libraries of modules, code fragments, or classes) and the use of off-the-shelf software. Code repositories

can be considered design knowledge bases. Though some authors (e.g., Beck 2005) argue that the best

mechanism to communicate design is the code itself, sharing design is not the same as sharing design

knowledge. Even well-commented code does not necessarily communicate design knowledge such as the

rationale for structural decisions (e.g., why information was stored in a certain structure).

Knowledge reuse refers to approaches to organizing and applying knowledge about software solutions,

not to organizing the solutions themselves. It includes algorithms, design patterns and analysis patterns7.

Perhaps the most successful attempt to codify software design knowledge is the design patterns approach.

A design pattern is an abstract solution to a commonly occurring problem. The design pattern concept

was originally proposed in the field of architecture and became popular in software engineering following

the work by (Alexander et al. 1977; Gamma et al. 1995)8.

33

7 Other approaches to organizing software development knowledge include architectural patterns, anti-patterns, best
practices and development methods. Standards and templates (e.g. for documentation) can also be considered
organized knowledge.

8 The Portland Pattern Repository (http://c2.com/ppr/) is an example of a design pattern repository that could be
called a design knowledge base.

http://c2.com/ppr/
http://c2.com/ppr/

www.manaraa.com

Despite the apparent benefits of sharing design knowledge, it has been observed that it is difficult to

accomplish. “Experts and veterans continue to shun reuse from public knowledge spaces” and that when

the needed artifact “was not found in their private space” “it was also less costly for them to recode the

desired artifact than to conduct a global search for one” (Desouza et al. 2006, p. 98). This indicates the

difficulties of locating needed design knowledge (or other software artifacts). One way to facilitate

searching is to classify and index design knowledge on meaningful dimensions. Next, we demonstrate by

example how the proposed definition of design can provide such dimensions and thus help index

instances of design knowledge.

An Example. In programming, an iterator object traverses a collection of elements, regardless of how the

collection is implemented. Iterators are especially useful when the programmer wants to perform an

operation on each element of a collection that has no index. The iterator design pattern is a description of

how best to implement an iterator. Table 2-6 shows how the design knowledge represented by the iterator

design pattern might be indexed using the elements of the proposed definition of design. Note that, in this

application the goals, requirements, etc. are properties of the iterator, not of the design pattern. The goal

of the design pattern, for instance, is to explain how to implement an iterator (and not how to traverse a

collection).

Table 2-6. Example of Design Knowledge Indexing

Object Type symbolic script
Object iterator
Agent application programmer
Goals access the elements of a collection of objects
Environment object-oriented programming languages
Primitives primitives and classes available in object-oriented programming languages
Requirements have a means of traversing a collection, be implementable with respect to a variety of collections, etc.
Constraints must not reveal how the objects in the collection are stored, etc.

By classifying design knowledge according to these dimensions, a designer can ask questions of the form

‘are there any design patterns (object) for traversing a collection (requirement) in an object-oriented

34

www.manaraa.com

language (environment)?’ We suggest that such classification can help organize and share design

knowledge and thus help improve designers’ effectiveness and efficiency in locating and applying useful

design knowledge.

2.5.2 Application 2: Design Approach Classification Framework

Classifying design approaches is important for several reasons. First, practitioners need guidance in

selecting appropriate design approaches for their situations. Second, such classification can facilitate

comparative research on approaches. Third, it can guide the study of the methods employed by

experienced developers (which, in turn, can inform research on software design and software processes).

At least two types of classifications of design approaches are possible. First, a classification can be based

on the actual elements (e.g. steps, interim products) that comprise a design approach or process. This can

be termed a “white-box” approach. Second, a classification can be based on the environment that

surrounds a design approach. For example, specific objectives of the approach, the view of design it

embeds, and the roles of stakeholders. This can be termed a “black-box” approach.

We suggest that the proposed design project conceptual model can be used to create a black-box

classification scheme for design approaches. This can facilitate understanding the deep structure of design

approaches and theorizing about conditions under which different approaches are appropriate. To

demonstrate, using dimensions derived from the design project conceptual model, Table 2-7 classifies

three design approaches: the Soft Systems Methodology (Checkland and Poulter 2006), Extreme

Programming (Beck 2005) and the Rational Unified Process (Kruchten 2003). We chose these three

because each is prominent in the literature and represents a significantly different perspective.

35

www.manaraa.com

2.6 DISCUSSION AND IMPLICATIONS FOR SOFTWARE DESIGN
RESEARCH

2.6.1 Completeness, Design Agency and Software Architecture

For years, researchers have argued that informal specifications may suffer from incompleteness

(Reubenstein and Waters 1991). Above, we defined a specification as a detailed description of an object in

terms of its structure. This allows a more precise characterization of incompleteness. We suggest that a

design specification is complete when the structural information that has been specified is sufficient for

generating (in principle) an artifact that meets the requirements.9

Table 2-7. Example Classification of Design Approaches

Approach Soft Systems Methodology (SSM) Extreme Programming Rational Unified Process (RUP)
Object human activity systems software software
Weltanschauung epistemic growing problem solving
Metrics situation dependent “measures of

performance;” the 5 E’s: efficacy,
efficiency, effectiveness, ethicality,
elegance

advocated, but none
provided; differentiates
internal and external quality

defines metrics as part of the process;
fundamental quality measure: ‘does
the system do what it is supposed to?’

Nature of
Specification

action items, i.e., some action that
can be taken to improve the situation,
in the eyes of the stakeholders

source code UML models (use cases and
diagrams); source code

Activities semi-structured interviews, analysis,
modeling, debate

coding, testing, listening,
designing (refactoring)

broadly: requirements gathering,
analysis and design, implementation,
testing, deployment, configuration and
change management, project
management (each with sub activities)

Artifacts interview guides and transcripts,
collections of notes, rich pictures

prototypes, test suites stakeholder requests, vision, business
case, risk list, deployment plan,
analysis model, etc.

Users owner, actor, customer programmers/developers,
clients

RUP users take on one or more of six
role categories: analysts, developers,
managers, testers, production and
support, and additional.

Stakeholders stakeholders is an explicit concept in
SSM

divided into “business” and
“development”

“stakeholder” is a “generic role” that
refers to “anyone affected by the
outcome of the project” (p. 276)

Tools rich pictures, interview guides,
debates and group discussions

story cards, diagrams, an
integration machine, several
development workstations

IBM Rational Suite

36

9 Since it is impossible to list every property of any object, we limit our discussion to “relevant” properties, i.e., a
sufficient subset of properties to allow a “generating machine” (e.g. a human being or a manufacturing robot) to
deterministically assemble the object.

www.manaraa.com

Based on the notion of completeness we have defined above, we can now identify three forms of

incompleteness. First, relevant components or connections may be missing. For example, the specification

of a bicycle may be missing the qualification that the tires be attached to the rims. Second, a particular

component or connection may be insufficiently described. For example, it may not be clear from the

specifications how the tires should be attach to the rims or which tire to use. (Please note, here we are not

distinguishing here between incompleteness and ambiguity.) Third, a component may not be part of the

set of primitives but can be designed based on existing primitives or other components. The design will

not be complete until specifications exist for all such components.

Completeness is not an end state for a design specification. Future changes in the set of primitives may

render a previously complete specification incomplete. Furthermore, many researchers now agree on the

importance of “the fluidity, or continued evolution, of design artifacts” (Hansen et al. 2007, p. 36). In

situations where future conditions are difficult or impossible to predict, one response is to focus on the

evolvability and adaptability of the design object (Gregor and Jones 2007; Simon 1996). The

characterization of design advanced here provides important implications for design fluidity. First,

specification completeness does not imply constancy. A design specification can be evolved to respond to

changing conditions by its original creator, the design object’s users, or others,. Furthermore, the elements

of the proposed definition enumerate classes of possible changing conditions in response to which the

design object or specification may need to evolve. For example, the specification may be modified in

response to changes in the environment. Finally, the set of requirements may contain stipulations for a

design object’s evolvability by end-users or others.

This raises questions of who exactly, in a typical software project, is the design agent? We have defined

the design agent as the entity or group of entities that specifies the structural properties of the design

object. When users are involved in design, whether a user is part of the design agent depends on the

nature of his or her involvement. Simply providing information, such as requirements, does not make a

user part of the design agent, nor does testing and giving feedback. To share in design agency, the user

37

www.manaraa.com

must make at least one structural decision regarding the design object. As a complete discussion of this

issue would require incorporating the vast literature on authority and organizational power (Aghion and

Tirole 1997; Pfeffer 1992); here, we simply point out that official authority to make a structural decision

does not necessarily coincide with the practical reality of who makes a decision. The key to identifying

the design agent is in separating those individuals (or groups) who provide information about constraints,

primitives and the other design elements, and those who decide on structural properties.

Another theme currently gaining significant attention is software architecture (Hansen et al. 2007).

Software architecture is the level of design concerned with “specifying the overall system

structure” (Garlan and Shaw 1993, p. 1). This presents a possible difficulty: if a specification is a

description of the components of a design object and their relationships, which components and

relationships are parts of the software architecture? How does one distinguish high-level components and

relationships from low-level ones? A design specification for a complex system might exist

simultaneously at many levels of abstraction. Alternatively (and perhaps more likely) high-level

components are defined in terms of lower-level components and these are defined in terms of even lower-

level components, etc., until everything is defined in terms of primitive components. In this multilevel

view of design, the software architecture concept is a threshold above which is architecture, and below

which is ‘detailed design.’ Is this threshold arbitrary? At this time, we can only suggest these fundamental

questions about software architecture as topics for future research.

2.6.2 Implications for Research

The proposed characterization of design also gives rise to several implications for design research. To

date, much design research has been prescriptive, addressing practical recommendations and guidance for

software development; yet, little theoretical, and even less empirical, treatment of software design exists

(Wynekoop and Russo 1997). This has led to many calls for field research in this area (e.g., Freeman and

Hart 2004; Simon 1996; Sullivan 2003; Wynekoop and Russo 1997). Defining design as the process by

which one specifies an object’s structural properties raises several important research topics:

38

www.manaraa.com

1. How is software designed in practice?

2. To what extent is each element of the proposed definition (requirements, primitives, etc.) known

when design begins?

3. Can a single theory explain every behavior involved in software design?

4. How do designers discover each kind of information?

Put another way, academic treatment of software design may involve developing and testing

interdependent process and causal theories of design. Process theories (see Appendix C) can be used to

explain how design occurs. Causal theories deal with effects of some variables on others and can be used

to suggest how to design better.

2.6.3 Goals vs. Requirements in Information Systems Development

The notion of goal is considered essential in requirements engineering as the concept that captures the

motivation for developing a system (“why”) and the way to define objectives at various levels of

abstraction (van Lamsweerde 2001). Our definition of design includes both goals and requirements. We

now describe briefly how these two concepts relate within this context.

We start by observing that in the information systems context, a design object is an artifact situated10 in an

environment termed the application domain and designed to support activities of the application domain.

Typically, the application domain is an organizational setting such as a business or a part of a business.

The application domain itself operates within an external environment. For example, a business is

embedded within a business environment comprised of customers, suppliers, competitors, service

providers, and regulatory bodies. The application domain and the external environment interact: the

environment generates stimuli that invoke actions in the domain. The actions of the domain can impact its

environment. Similarly, the artifact is situated in the domain. The domain and the artifact interact: the

domain creates external stimuli which invoke actions in the artifact. The actions of the artifact can impact

39

10 The word situated should not be taken literally in the physical sense, but in the sense that the artifact acts interacts
with other components in a domain.

www.manaraa.com

the domain. Once the artifact is embedded a change occurs: the domain now includes the artifact. Now

the modified domain (with the included artifact) interacts with the external environment. This view is

depicted in Figure 2-5.

Fig. 2-5. Separate Domains of Goals and Requirements

Domain goals, or simply goals, are the intended impact of the actions in the domain on the external

environment11. The purpose of the artifact is to enable the domain to accomplish these goals more

effectively and efficiently. The artifact does this by responding to stimuli from the domain is ways that

will support the domain in accomplishing the goals. Accordingly, requirements can be defined as the

properties that the artifact should possess in order to accomplish its purpose. These requirements can be

of two types:

1. Structural requirements are intended to assure that the object can match well with the other

components of the domain or its external environment.

2. Behavioral requirements define the desired responses of the artifact to stimuli from the domain (or

from the environment) generated when the domain is working to accomplish its goals. These

responses, in turn, affect the domain (and, directly, or indirectly, the environment).

The requirements definition process can be viewed as identifying the properties (structural and

behavioral) that the artifact should possess to support the domain in accomplishing the goals. Design can

40

11 For example, while it may appear that ‘profitability’ is related to the business rather than to its environment,
profitability is the outcome of exchanges between a business and its environment, and the business should act such
that these exchanges create the desired outcome.

www.manaraa.com

be viewed as the way to assemble available types of components in order to accomplish an artifact that

meets the requirements.

2.7 CONCLUSION

The work we describe here is motivated by the observation that a clear, precise and generally accepted

definition of the concept of design can provide benefits for research, practice and education. Our literature

study indicated that such a definition was not available. Therefore, we synthesized a new definition,

which views the design activity as a process, executed by an agent, for the purpose of generating a

specification of an object based on: the environment in which the object will exist, the goals ascribed to

the object, the desired structural and behavioral properties of the object (requirements), a given set of

component types (primitives), and constraints that limit the acceptable solutions. As one possible

application of our definition we demonstrate how it can be used to index design knowledge to support its

reuse.

As a second step, we situate the design concept in a network of related concepts appropriate to the

information systems and software development domain by proposing a conceptual model of design

projects. The intent of this conceptual model is to facilitate study of design projects by identifying and

clarifying the main relevant concepts and relationships. We demonstrate the usefulness of this conceptual

model by using it to compare several approaches to system and software design.

Finally, we link our proposed definition of design to current themes in design research, in particular, the

notion of requirements as used in system development.

One purpose of this work is to facilitate theoretical and empirical research on design phenomena. We

hope this chapter will contribute to clarifying understanding and usage of design and related concepts and

encourage scientific research on design. Another purpose is to create a set of concepts that can guide

practice and education in the information systems and software design domain.

41

www.manaraa.com

This article includes examples of design from diverse areas including prehistoric hunters, artists, and

architects. The reader may question whether such a broad perspective on design is useful for studying

software development. Yet, it remains unknown whether software designers are more like engineers or

artists, or are not much like either. This can only be answered by observing the behaviors of a wide range

of those who are engaged in software design: elite and amateur, engineers and hackers, formally trained

and self-taught. Having a well defined set of concepts to describe and reason about phenomena related to

design and design projects can provide guidance for this empirical work.

42

www.manaraa.com

CHAPTER 3: THE SENSEMAKING-

COEVOLUTION-IMPLEMENTATION FRAMEWORK

OF SOFTWARE DESIGN

43

www.manaraa.com

3.1 INTRODUCTION

Software development and maintenance constitute substantial economic activity – in 2006, the 500 largest

software companies employed 2,914,480 and accrued revenues of $394 billion (Desmond 2007) and

“total global spending on technology goods, services, and staff … [reached] $2.02 trillion” (Bartels et al.

2006). The magnitude of this spending makes estimates of software project failure rates far more

alarming. Estimates of completely abandoned projects vary between 10% and 44% while between 16%

and 52.7% experience “major truncation or simplification … prior to full implementation” (Ewusi-

Mensah 2003, p. 17, 19). In comparison, if civil-engineering projects had similar success rates,

abandoned construction projects would be scattered throughout our cities. The high failure rates of

software projects highlight the potential value of “design methodics” (Eekels 2000) – methods,

technologies, techniques and practices intended to improve project outcomes – and academic research to

create or improve them.

However, developing better design methodics is hampered by the fact that the shape and organization of

the software design process is not well understood (Freeman and Hart 2004; Simon 1996; Sullivan 2003;

Wynekoop and Russo 1995). In this regard, software design differs from other design-related fields such

as architecture and urban planning, where researchers have investigated design practices using

observational methods (Schön 1983). Truex et al. (2000) argued that “the history of information systems

development is typically interpreted as the history of methods for systems development” (p. 56, emphasis

added). In a meta-analysis of research on systems development methods (SDMs), Wynekoop and Russo

(1997) identified 67 studies attempting to understand or describe SDMs – of these 63 were based only on

the authors’ speculations or opinions with no theoretical or empirical grounding, the remaining four being

surveys focusing on a small number of SDMs or on specific techniques. Empirical research to understand

and to describe design phenomena and methodics is the essence of design science (Eekels 2000).

Recognizing the relationship between design science, developing better design methodics and improving

design project outcomes generated the insight motivating this study.

44

www.manaraa.com

Motivation: Before prescribing what software design teams should do, it is necessary to

understand what they currently do.

Curiously, our collective ignorance of design practice remains despite four decades of calls for empirical

design science research (cf., Simon 1969). One explanation for why questions concerning the nature of

software design practice are rarely studied empirically is that it is entirely unclear how to study them.

Suppose we wish to test a theory of how software is designed. What would such a theory look like?

Where could one be found? Are traditional research methods appropriate to test it? The answers to these

and related questions are sufficiently complex that substantial analytical work is required to facilitate

empirical study of software design practice – hence the purpose of this chapter.

Purpose: The purpose of this chapter is to review what is believed about how professionals

create software in practice and to synthesize these beliefs in an empirically testable form.

To this end, clear definitions (from ch. 2) may help to guide analysis. A software design project is defined

as a temporary trajectory of a Work System (Alter 2006) toward the goal of creating a software design. A

software design is a specification of a software object, by an agent, to accomplish goals, in a particular

environment, using a set of primitive components, satisfying a set of requirements, and subject to set of

constraints. The specification may be a document, formal model, or software code. Moreover, software

design (verb) is an activity where an agent creates or attempts to create a software product in some

context. This creates the generic design situation of Figure 3-1 – at a time, an agent in an environment

forms an intention to create a design. At a later time, a software artifact exists.

This raises the question how and why does the software artifact come into existence? More precisely,

what is the process whereby development teams create software, in practice? By the process, I mean the

activities software design agents share (not that all software designers behave identically).

45

www.manaraa.com

Environment at Time T2Environment at Time T1

Agent

has

Agent

Software
Artifact

Intention
to create a

design

?

Fig. 3-1. Generic Design Scenario

In summary, I posit that better design methodics may reduce software project failure rates; however, lack

of theoretical knowledge regarding software design phenomenology hampers efforts to improve

methodics. Moreover, how to empirically study design methodics and phenomena is unclear. Therefore, I

propose to facilitate empirical design science research by organizing design literature (§3.2 and §3.3)

according to a conflict between two contrasting perspectives on design (§3.4). I further propose to

operationalize these perspectives into contrasting, empirically testable software design process theories,

thereby representing two alternative views of the shape and the organization of the design process (§3.5).

Section 3.6 concludes with a summary of contributions, implications and future work.

3.2 LITERATURE REVIEW – PRE-THEORETICAL
CONTRIBUTIONS

This section reviews specific research findings in design science and related fields that are immediately

useful in this chapter. Other important but not imminently applicable research is discussed in Appendix D.

46

www.manaraa.com

3.2.1 Design Paradigms

Dorst and Dijkhuis (1995) argued that “there are many ways of describing design processes” and

discussed “two basic and fundamentally different ways” (p. 261) – the Technical Problem-Solving

paradigm (Simon 1996) and the Reflection-in-Action paradigm (Schön 1983). Reflection-in-Action was

explicitly positioned as an alternative to Technical Problem-Solving. Similarly, Love (2000) claims that

“Information processing is the most common theoretical perspective on design found in the contemporary

literature of design research”, while “creativity”, which “forms the basis of this alternative metaphor of

design research … has been unfashionable in engineering design research for some time” (p. 308). Below,

I discuss the Technical Problem-Solving and Reflection-in-Action paradigms, and their relationship to

information processing and creativity metaphors.

The Technical Problem-Solving Paradigm. “According to the model of Technical Rationality – the

view of professional knowledge which has most powerfully shaped both our thinking about the

professions and the institutional relations of research, education, and practice – professional activity

consists in instrumental problem-solving made rigorous by the application of scientific theory and

technique” (Schön 1983, p. 21). Technical Rationality requires that problems be given, in the sense that

goals are agreed upon in advance and constraints are knowable. It is the foundation of positivist

epistemology (Schön 1983).

Based on this model, Simon (1996) elucidates the Technical Problem-Solving design paradigm, positing

design professionals as rational agents attempting to optimize a design candidate vis-à-vis known

constraints and objectives (Newell and Simon 1972; Simon 1996). Where the problem space is so large

that finding an optimal solution is beyond the designer’s limited processing power, the designer will

“satisfice” or “find decisions that are good ‘enough’”, often through heuristic search (Simon 1996, p. 27).

Simon coins the term “procedural rationality” for this “finding a way of calculating, very approximately,

where a good course of action lies” (p. 27), thereby differentiating a (boundedly) rational action from

rational outcome.

47

www.manaraa.com

In addition to procedural rationality, Simon’s thesis rests on the assumption that “a physical symbol

system … has the necessary and sufficient means for general intelligent action” (p. 23). More specifically,

intelligent agents model their environments and possible actions using symbol structures; “hence the

programs that govern the behavior of a symbol system can be stored, along with other symbol structures,

in the system's own memory, and executed when activated” (p. 22). This is equivalent to the cognitivist

view of human action. In the cognitivist view, all human action is executed and understood through a

plan. A plan, i.e., “a sequence of actions designed to accomplish some preconceived end” (Suchman

1987), is a prerequisite to action. Unanticipated conditions trigger re-planning and evaluation is

performed by comparing what was done to what was planned.

Moreover, Technical Problem-Solving is consistent with Love’s Information Processing metaphor, where

“design is seen as the codification, selection and management of information. The characteristic design

method is the use of information selecting algorithms.” Furthermore, “the designer is seen as a machine

capable of rationally selecting and connecting together elemental information to satisfy a set of

constraints” (Love 2000, p. 309). Meanwhile, Simon (1996) suggests that “All mathematics exhibits in its

conclusions only what is already implicit in its premises … this view can be extended to all of problem

solving – solving a problem simply means representing it so as to make the solution transparent” and that

even “if this is too exaggerated a view – a deeper understanding of how representations are created and

how they contribute to the solution of problems will become an essential component in the future theory

of design” (p. 132). Therefore, information processing is central to Technical Problem-Solving. Moreover,

Simon’s modeling of the human mind as a physical symbol system is consistent with the information

processing view of the designer as approximating a rational machine. Neither Simon nor Love formally

define either Technical Problem-Solving or information processing; however, they do appear consistent.

Simon’s Technical Problem-Solving paradigm has been used to code activities of industrial designers in

protocol studies (Dorst and Dijkhuis 1995). However, my literature review did not uncover any empirical

evidence that designers exhibit procedural rationality.

48

www.manaraa.com

The Reflection-in-Action Paradigm. Social constructivism is an epistemological paradigm positing that

knowledge is derived from social interactions (Berger and Luckmann 1966). In this sense, goals and

constraints are socially constructed concepts. Building on social constructivism and empirical studies of

professional practice, Schön (1983) devised the Reflection-in-Action design paradigm, where design is a

reflective conversation between the designer and the situation. The designer alternates between framing

(conceptualizing the problem), making moves (where a move is a real or simulated action intended to

improve the situation) and evaluating those moves. Multiple agents may collectively reflect in action

using boundary objects (Levina 2005). (A boundary object is an object that is simultaneously flexible

enough to serve multiple parties and robust enough to maintain its identity. Examples include design

drawings and physical prototypes.) Reflection-in-Action differs from Technical Problem-Solving in many

ways: 1) professionals respond to a problematic situation with many possible interpretations, rather than

responding to a given problem; 2) professionals form and explore hypothesis about potentially beneficial

actions rather than optimizing or satisficing design candidates for known objectives and constraints.

Schön (1983) argued that “when someone reflects an action, … he does not keep means and ends

separate, but defines them interactively as he frames a problematic situation. He does not separate

thinking from doing” (p. 69). This rejection of planning as the foundation of action is consistent with

what may be called the ethnomethodological view of human action (ethno-view). In the ethno-view, “the

organization of situated action is an emergent property of moment-by-moment interactions between

actors, and between actors and the environments of their action” (Suchman 1987, p. 179) while “plans are

representations, or abstractions over action” (p. 186). Simply, human actions are always improvised, even

when previously planned.

Both Reflection-in-Action and the ethno-view imply that the basis for innovation is the creativity and

experience of the designer, Love’s creativity metaphor: “where design is seen as a creative process the

dominant mechanism of decision-making and evaluation is the use of ‘feeling.’ … All creative design

49

www.manaraa.com

methods necessarily depend on a sufficient base of experience residing within the designer(s)” (Love

2000, p. 310). Similarly, Schön (1983) explains:

“The practitioner has built up the repertoire of examples, images, understandings, and

actions.... When a practitioner makes sense of the situation he perceives to be unique, he

sees it as something already present in his repertoire…. [Furthermore,] each practitioner

tries to adapt the situation to the frame … through a web of moves, discovered consequences,

implications, appreciations, and further moves … The situation talks back, the practitioner

listens, and as he appreciates what he hears, he reframes the situation once again...” (p.

132).

Schön’s use of “appreciation” is akin to Love’s emphasis on feeling and both emphasize experience. As in

the previous section, neither author formally defines his perspective; hence, I simply conclude that

Reflection-in-Action is intuitively compatible with the creativity metaphor.

The Reflection-in-Action paradigm gains empirical support from Schön’s (1983) own case studies.

Furthermore, after a series of action research studies, Mathiassen (1998) concluded that “Reflection-in-

Action provides a useful understanding of systems development practice” (p. 42).

Summary. Table 3-1 summarizes the differences between the Technical Problem-Solving and Reflection-

in-Action design paradigms in terms of their underlying assumptions. Schön succinctly states his primary

attack on Simon’s assumptions: in situations where “Technical Problem-Solving occupies a limited place

within the inquirer's reflective conversation with his situation; the model of Technical Rationality appears

as radically incomplete” (Schön 1983, p. 165). Activities including goal setting and resolving disparate

perspectives on design choices and appropriate methods or practices clearly lie outside Technical

Problem-Solving. Therefore, the extent to which each of these paradigms applies specifically to software

design depends on its scope (i.e., whether it includes problem-understanding and implementation) and the

centrality of Technical Problem-Solving in the work of software developers.

50

www.manaraa.com

Table 3-1. Summary of the Technical Problem-Solving and Reflection-in-Action Paradigms (Adapted

from Dorst and Dijkhuis 1995, Figure 1)

Technical Problem-Solving Reflection-in-Action

Primary Proponent Simon (1996) Schön (1983)
Epistemology Positivist Constructivist

Theory of Action Cognitivist Ethnomethodological
Designer information processor / rational agent person constructing his or her reality
Design Problem given evaluation criteria for alternatives, which

are representable as points in a problem space
essentially unique and poorly understood at the
start

Design Knowledge knowledge of design procedures and scientific
laws

artistry of design (when to apply which procedure /
piece of knowledge)

Guiding Metaphor Information Processing Creativity
Deisgn Process a rational search process a reflective conversation

3.2.2 The Design Space / Problem Space Distinction

An important development in conceptual research on design involved separating the design (or solution)

space from the problem space. Purao et al. (2002) described “the problem space … as the metaphoric

space that contains mental representations of the developer’s interpretation of the user requirements” and

“the design space” as “ the metaphoric space that contains mental representations of the developer’s

specific solutions” (p. 251-252). This distinction is evident in analytical (e.g., Dorst and Cross 2001),

empirical (e.g., Gero and Mc Neill 1998) and prescriptive (e.g., Checkland 1999) design research (see

Purao et al. 2002 for more examples). The basic idea of separating the designer’s reasoning about what

currently exists from that of what may exist in the future underlies several of the theories discussed in

Section 3.3.

Furthermore, several papers discuss the relationship between the two spaces. Alexander (1964) called this

“probing,” while Berente and Lyytinen (2006) called it “iteration”. Schön’s (1983) referred to a

“reflective conversation” of making and evaluating “moves”. This iterative relationship is also the basis

of Maher et al.’s Problem-Design Exploration Model (§3.3.2) and is related to mapping theories of design

(Appendix D).

51

www.manaraa.com

3.2.3 Design Scope and the Design Process I/O Model

In the Waterfall Model, discussed below, design is modeled as the stage between requirements analysis

and implementation. This assumes that the designer is provided with a well-defined problem to solve

(Royce 1970). Some have abandoned this notion, saying that “we had moved away from working with the

idea of an ‘obvious’ problem which required solution, to that of working with the idea of a situation

which some people, for various reasons, may regarded as problematical” (Checkland 1999, p. A8). In this

view, design begins not with a well-known problem, but with an agent forming the intention to design

something (ch. 2). In fact, it is possible for a problem’s structure to remain unclear even after it is solved

(e.g., airplanes preceded the physics of flight).

In Chapter Two, I provided the black-box, input/output conceptual model of the design process (Figure

3-2). Each of the model’s concepts is defined in Table 3-2. In this model, design is an activity, engaged in

by a design agent. The agent begins designing with intentionality, knowledge of the type of object being

designed (e.g. software, a building) and knowledge of the design’s would-be environment (e.g., the

Internet, a canyon). The designer may also have knowledge of specific goals, primitives (of which the

design is composed), requirements and constraints. During the design process, the designer’s

conceptualization of the environment, goals, primitives, requirements, constraints and its own intentions

may change. The output of the process is a specification of the design object, which may be a document

explaining the object’s composition or the object itself.

The Design Process Input/Output Model is compatible with the Reflection-in-Action paradigm insofar as

it only posits that the designer has knowledge of the problematic situation (environment, requirements,

constraints), not that its knowledge is complete or that the problem is bounded. The primary limitation of

this model is that it does not attempt to explain how or why the design activity occurs – only the objects,

concepts and knowledge involved. However, if we posit that these concepts apply to all forms of design,

including software design, they may be useful for informing or evaluating theories of software design.

52

www.manaraa.com

Table 3-2. Definitions of Concepts in the Design Process I/O Model (from ch. 2)

Concept Meaning

Agent the entity or group of entities that specifies the structural properties of the design object
Constraints a structural or behavioral restriction on the design object*

Design an act by which an agent intentionally creates a specification of an object, intended to accomplish goals, in a
particular environment, using a set of primitive components, satisfying a set of requirements, subject to
constraints; the result of this act

Environment The object environment is the context or scenario in which the object is intended to exist or operate (used for
the noun form). The agent environment is the context or scenario in which the design agent creates the design
(used for the verb form).

Goals the desired impacts of design object on its environment. Goals are optative statements (i.e. indicating a wish)
that may exist at varying levels of abstraction (Lamsweerde 2001)

Intentions the agent’s “readiness” to engage in designing or achieve some purpose by way of designing (see Ajzen
2005)

Primitives the set of elements from which the design object may be composed (usually defined in terms of types of
components assumed to be available)

Requirements a structural or behavioral property that a design object must possess.
Specification of
Object

A specification is a detailed description of an object in terms of its structure, e.g., the primitives used and
their connections.

Type of Object The kind of object being specified, e.g., software, mechanical device, law.

Fig. 3-2. Design Process Input/Output Model (from ch. 2)

3.2.4 Systems Development Method(ologie)s

For the purposes of this dissertation, a systems development method (SDM) is a collection of activities,

practices, tools or other prescriptions, paired with an implicit or explicit claim that applying them to a

design project will lead to better outcomes.

Specification
of ObjectDesign

Requirements

Constraints

Primitives

Environment

Intentions

Agent

enacted by

Goals

Type of Object

input to
modified based on design

always available before design begins
might not be available before design begins

results in

evolve into

53

www.manaraa.com

The Hardships of SDMs. The empirical study of SDMs is fraught with two primary difficulties. First,

more than 1000 such methods exist (Jayaratna 1994), forming a conceptual labyrinth so bewildering that

Avison and Fitzgerald called it the “methodology jungle” (1988). Iivari et al. (2000) attempted to

structure the methodology jungle by providing a classification framework “for better understanding the

intellectual core of methodologies and approaches and their interrelationships” (p. 180). However, the

proliferation of methods still complicates efforts to understand their adoption, use and effects. Second, the

effectiveness of an SDM depends on a myriad of factors including the project’s context, how it is used

and the degree of alignment between the SDM and the design team, making it extremely difficult to

measure. Furthermore, pairwise comparisons of methods are plagued by debilitating confounds (see ch.

1). Moreover, the abundance of methods necessitates many such comparisons.

Relationships between SDMs and Design Paradigms. SDMs may be categorized according to the

design paradigm that best represents their elements or underlying assumptions. Below, I illustrate this for

several common SDMs (Table 3-3). I also provide an example of a possible development scenario outside

the scope of each method, for reasons obvious below.

Code-and-fix. The code-and-fix model (cf., Boehm 1988) is perhaps the simplest software development

method. In this method, the developer iterates between writing code and fixing code, where fixing code

includes eliminating syntactic and logical errors and refactoring. This method is consistent with

Reflection-in-Action as the designer iterates on the code and does not separate analysis from design.

While coding and fixing code may be essential software development activities, this method does not

accurately represent developers who spend much time planning.

Waterfall. The Waterfall Model (Royce 1970) is a label given to several methods that share a common

core of activities including requirements elicitation, systems design, coding, implementation and

maintenance. Ironically, the term “Waterfall Model” quickly came to refer to the no-backtracking version

that Royce was criticizing rather than the more iterative model he was proposing. Regardless of the exact

sequence prescribed, the Waterfall Model does not apply when developers engage in multiple activities
54

www.manaraa.com

(e.g. requirements analysis and implementation) simultaneously. By separating analysis from design and

emphasizing linear progression, the Waterfall model is consistent with Technical Problem-Solving.

Table 3-3. Summary of Analysis of Software Development Methods

Model or
Method

Key
Reference

Synopsis Example Context where
method does not apply

Closest
Paradigm

Code-and-fix (Boehm 1988) developer alternates between coding and fixing
code

development driven by
documents, e.g.,
requirements specification

Reflection-in-
Action

Waterfall (Royce 1970) developer proceeds linearly: requirements →
analysis → design → coding → testing →
operations (sometimes with backtracking)

development involving
simultaneous activities

Technical
Problem-Solving

Spiral (Boehm 1988) developer iterates primarily among risk analysis,
prototyping and planning

development ignoring
risks

Technical
Problem-Solving

SSM (Checkland et
al. 2006)

developer models the existing situation and uses
models to guide a discussion about how to
improve the situation

development that focuses
on coding and does not
involve models/diagrams

Reflection-in-
Action

RUP and
USP

(Jacobson et
al. 1999;
Kruchten
1998)

development proceeds in four phases: inception
→ elaboration → construction → transition. Each
phase includes each of the key activities in the
Waterfall Model and produces specific documents
that mark progress.

development that focuses
on coding and does not
involve models, diagrams,
use cases and other
documents

Technical
Problem-Solving

Extreme
Programming

(Beck 2005) a combination of particular values, principles and
practices that guide development but do not
prescribe a particular sequence of activities

development focusing on
intermediary documents,
plans and contracts

Reflection-in-
Action

Scrum (Schwaber
and Beedle
2001)

a project management framework for agile
development, focusing on work organization
tactics

devolpment by individuals Reflection-in-
Action

Spiral. The spiral model combines many of the activities from the Waterfall Model with the iterative

nature of the code-and-fix model and a predominant focus on risk mitigation (Boehm 1988). A team using

the spiral model iterates between three basic activities – risk analysis, prototyping and planning, – with

requirements analysis, design, testing and implementation interspersed between them, depending on the

sophistication of the prototype. By separating analysis from design and emphasizing mathematical risk

analysis, the Spiral model is consistent with Technical Problem-Solving. This method does not apply

when developers ignore risks or cannot evaluate risks.

Soft Systems Methodology. “Soft Systems Methodology (SSM) is an organized way of tackling social

situations perceived as problematical. It is action-oriented. It organizes thinking about such situations so

55

www.manaraa.com

that action to bring about improvement can be taken” (Checkland and Poulter 2006, p.xv). While SSM is

not specific to software development, it may be applied in this context. The SSM practitioner makes

models of purposeful activity as perceived by different people with different worldviews and uses them to

structure discussion where desirable and feasible changes are identified. SSM does not apply when

developers do not create models of participant perceptions of purposeful activity. SSM’s iterative nature

and focus on problem-understanding make it more consistent with Reflection-in-Action.

The Rational Unified Process (RUP) and Unified Software Process (USP). Some software

development methods, such as RUP (Kruchten 1998) and USP (Jacobson et al. 1999), contain specific

process models. The activities of these methods overlap with the steps of the Waterfall Model; however,

the sequencing is more sophisticated with many activities occurring in parallel. RUP and USP are

consistent with Technical Problem-Solving in their strong emphasis on planning and modeling, and their

separation of design from coding. They do not apply when developers dive directly into coding without

concerning themselves with planning or requirements.

Extreme Programming and Agile Methods. Extreme programming (Beck 2005) and other agile

methods (Abrahamsson et al. 2002; Beck et al. 2001), promote a set of guiding values (e.g., simplicity),

principles (e.g., accepting responsibility) and practices (e.g., pair programming). The software, and

thereby the software design, are assumed to emerge from the actions of competent people employing

these values, principles and practices. Agile methods do not prescribe a precise activity sequence (cf.,

Beck 2005) but they are generally consistent with Reflection-in-Action as they emphasize code over

models and deemphasize planning. As agile methods reject plan-driven development, as embodied by

RUP and USP, they do not apply to RUP- or USP-like development.

Scrum. Scrum (Schwaber and Beedle 2001) is a project management framework often used in

conjunction with Extreme Programming and other agile methods. In Scrum, the “product owner”

determines the project’s direction, while the “Scrum Master” maintains the process. Small teams develop

56

www.manaraa.com

software in two to four week “sprints” assuming that the problem cannot be fully understood or defined –

hence, Scrum is consistent with Reflection-in-Action. Scrum does not apply to plan-driven development.

Axiomatic Design (Suh 1990, 2001) is a collection of engineering design principles developed by Nam

Suh. It assumes that “the world of design is made up of four domains: the customer domain, the

functional domain, the physical domain and the process domain,” and “all designs fit into these four

domains” (Suh 1998, p. 204). The customer domain contains the customer’s needs, which can be mapped

into functional requirements in the functional domain, which in turn can be mapped into design

parameters in the physical domain, and then process variables in the process domain. The residents of

each domain can be organized hierarchically (Suh 1990).

Based on this worldview, Suh (1990) proposes two axioms, i.e., self-evident truths. “The independence

axiom” states “Maintain the independence of functional requirements,” while “the information axiom”

states “Minimize the information content of the design.” Numerous corollaries and theorems (in the

mathematical sense of theorem) are derived from these two axioms (Strogatz 1994; Suh 1990). For

example, Suh (1990) postulates that an ideal design has an equal number of design parameters and

functional requirements. Suh (1995) extends these with more specific theorems for designing large

flexible systems and organizations, for example, that the most efficient organizational design maximizes

the organizations’ ability to reconfigure its structure.

Axiomatic design is included here, as a method, because Suh’s axioms are clearly prescriptive. Moreover,

the theorems and corollaries are also prescriptive. In addition to the examples provided above, one

corollary recommends having as few constraints and requirements as possible. While these prescriptions

cannot inform a theory of software design due to the methods / theories disjunction discussed below,

Suh’s basic reasoning about requirements, goals and constraints may be useful. Axiomatic design is

mostly consistent with technical problem solving, as evidenced by its waterfall-like process elements (cf.,

Suh 1998). It would not apply to most agile methods, code-and-fix or any non-technical, prototype-based

approach to design that does not involve the specific formal matrix approach suggested.
57

www.manaraa.com

Sample of Methods. Many other methods could be discussed, including Model Driven Architecture /

Engineering (Schmidt 2006), the Fountain Model (Henderson-Sellers and Edwards 1993), the Hollywood

Model (Gladden 1982), Feature Driven Development (Coad et al. 1999, ch. 6), Rapid Application

Development (Martin 1991) and the Systems Development Life Cycle (Appendix A). However, the

sample of methods discussed should sufficiently illustrate how SDMs fit with Technical Problem-Solving

and Reflection-in-Action and the disjunction between methods and theories.

The SDM/Theory Disjunction. Methods of design purport to describe good ways of designing software;

theories of design purport to describe all ways of designing software (cf., Gregor 2006). Consequentially,

design methods in general are inappropriate foundations for design theories (Vermaas and Dorst 2007).

Moreover, a comprehensive understanding of software development requires study of both effective and

ineffective design practice so that antecedents of effectiveness may be identified. In addition, descriptive

validity of methods may be challenged on the basis of identified instances of amethodical software

development, discussed next. Therefore, SDMs have limited usefulness for understanding software design

practice.

3.2.5 Amethodical Software Development

Many of the processes described in the previous section assume that developers can and do act in a

methodical, if not rational, manner. Indeed, much design research is based on this assumption (Dorst and

Dijkhuis 1995; Schön 1983; Truex et al. 2000). However, the many instances where designers produced

software without using a method or acting methodically summarized below refute this assumption.

Many studies have suggested that SDMs are neither effectively nor extensively used (Avgerou and

Cornford 1993; Bansler and Bødker 1993; Dobing and Parsons 2006; Whitley 1998). For example, in a

study of “a large scale system development effort”, Zheng et al. (2007) found that “home-gown methods

and ad hoc activities appear to dominate the day-to-day practices of systems development” (p. 1). Bansler

& Bødker (1993) found that developers may claim to follow a method while practically ignoring it.

58

www.manaraa.com

Similarly, Parnas and Clements (1986) argued that methodologies are “faked” and Nandhakumar and

Avison (1999) argued that methodologies are used as “fiction” to make sense of actual practice. Turner

(1987) found that similar methods applied in similar settings led to contrasting results. Baskerville et al.

(1992) provided a possible explanation by demonstrating that organizations may change so quickly that

long-term SDMs become ineffective. Furthermore, in an experimental study, Naur (1993) found that “the

effectiveness of a particular technique in programming appears to be overwhelmingly dependent on the

personality of the programmer using it … suggest[ing] that any methodology which imposes a particular

style or manner of work on the programmers, at best may be taken to be useful to a part of the population

of programmers, while any claim to general usefulness or applicability of a methodology is likely to be

false” (p. 360-1). In field studies of expert designers, Schön found evidence indicating that designers do

“not keep means and ends separate” or “separate thinking from doing” (1983, p. 69). Truex et al. (2000)

summarized the argument by asking whether “methods [are] merely unattainable ideals and hypothetical

‘straw men’ that provide normative guidance to utopian development situations” (p. 53).

More fundamentally, Truex et al. (2000) argued that “the concept of method ... occupies an extremely

privileged status in formal information systems development thought even though its origin is

unstated” (p. 54) while “the possibility that amethodical development might be the normal way in which

the building of these systems actually occurs in reality,” has “almost entirely elud[ed] the systems

development literature” (p.58, emphasis added). “Amethodical systems building implies management and

orchestration of systems development without a predefined sequence, control, rationality, or claims to

universality. An amethodical development activity is so unique and unpredictable for each information

systems requirement that even the criteria of contingent development methods are irrelevant” (Truex et al.

2000, p. 54). Baskerville et al. (1992) and (2004) found evidence of amethodical systems development in

several case studies of software developers. The developers were led by practices and principles, similar

to those of agile development; however, agile development “may be better described as “‘methodical-

lite’ rather than amethodical” (Zheng et al. 2007, p. 2).

59

www.manaraa.com

In summary, although the above evidence does not conclusively demonstrate (or even suggest) that all

software design is amethodical, it certainly does call into question: 1) the model of Technical Rationality,

2) the “procedural rationality” at the heart of the Technical Problem-Solving paradigm; 3) the usefulness

of methods (which represent methodical development) as foundations for understanding design. This

evidence invalidates any a priori preference for Technical Problem-Solving (and its associated concepts)

over Reflection-in-Action (and its associated concepts).

3.2.6 The Conscious Competence Learning Model

The Conscious Competence Learning Model1 describes four stages in the development of professional

competence in a skill area. In stage one, “the person is not aware of the existence or relevance of the skill

area” or “they have a particular deficiency in the area concerned,” In stage two, “the person becomes

aware of the existence and relevance of the skill … [and] their deficiency in this area.” In stage three, the

person can perform the skill reliably and without assistance but only when concentrating. In stage four,

the skill can be “performed while doing something else” and “the person might actually have difficulty in

explaining exactly how they do it.” A fifth stage, “reflective competence”, may also exist, where a person

can perform a skill with unconscious competence and then rationally reconstruct his actions to develop

unconscious competence in others. A central claim of this model is that it “is not possible to jump stages.”

While one would not expect to find many software developers in stage 1 (since one would not become a

developer while ignorant of or deficient in the profession, some developers may inhabit each of stages 2

through 5. Therefore, a thorough understanding of software development in practice requires examination

not only of experts (stage 4) but also of students and amateurs (stage 2), junior professionals (stage 3) and

gurus (stage 5).

60

1 Chapman, Alan (2009) Conscious Competence Learning Model. Available: http://www.businessballs.com/
consciouscompetencelearningmodel.htm. Retrieved 17 June 2010.

http://www.businessballs.com/consciouscompetencelearningmodel.htm
http://www.businessballs.com/consciouscompetencelearningmodel.htm
http://www.businessballs.com/consciouscompetencelearningmodel.htm
http://www.businessballs.com/consciouscompetencelearningmodel.htm

www.manaraa.com

3.2.7 Summary of Pre-theoretical Contributions

This section began by elucidating two incompatible design paradigms – Technical Problem-Solving

(Simon 1996) and Reflection-in-Action (Schön 1983). The former views design as rational search for a

solution to a known problem; the latter views design as a reflective conversation between a designer and a

situation, where problem understanding and solving are intermingled. Both paradigms distinguish

between two domains – the problem space and the solution space. However, while Technical Problem-

Solving is consistent with design as an activity following analysis and preceding coding, Reflection-in-

Action assumes a much larger scope, consistent with the Design Process Input/Output Model, where

design is the complete process from intentions to artifact.

Specific systems development methodologies can be classified according to which paradigm better

represents their assumptions; however, some systems are not developed in a methodical way. This

amethodical development is more consistent with Reflection-in-Action. Moreover, empirical findings on

amethodical development favor Reflection-in-Action. Finally, the potentially broad range of professional

competence implies that a holistic understanding of design must cover both amateurs and experts.

3.3 LITERATURE REVIEW - THEORETICAL CONTRIBUTIONS

3.3.1 The Basic Design Cycle

Roozenburg and Eekels (1995, p. 88) argue “that design is in essence a trial-and-error process that

consists of a sequence of empirical cycles, in which the knowledge of the problem as well as the solution

increases spirally. We call the model of this cycle ‘The Basic Design Cycle’” (see Figure 3-3). They

explain that The Basic Design Cycle “is a specific implementation of the more general empirical

cycle” (p. 88). The cycle begins with a known problem. The first step is to analyze this problem,

determine the “technical[,] ... psychological, social, economic and cultural functions that a product should

fulfill”, not in detail but in “broad statements” (p. 90). This produces criteria through which design

candidates may be evaluated. The second step is to synthesize a provisional design, which Roozenburg

61

www.manaraa.com

and Eekels describe as “the moment of externalization and description of an idea, in whatever form

(verbally, sketch, drawing, model, etc.)” (p. 91). Next, “simulation is forming an image of the behaviour

and properties of the designed product by reasoning and/or testing models, preceding the actual

manufacturing and use of the product…. Simulation leads to ‘expectations’ about the actual properties of

the new product, in the form of conditional predictions” (p. 91). The next step is evaluation –

“establishing the ‘value’ or ‘quality’ of the provisional design” by comparing “the expected properties …

with the desired properties in the design specification” (p. 92.). Last is “the decision: continue - that is to

say, elaborate the design proposal or, if it is the final design, manufacture it - or try again and generate a

better design proposal” (p. 92).

System
Requirements

Software
Requirements

Analysis

Program Design

Coding

Testing

Operations

Analysis

Synthesis

Simulation

Evaluation

Problem

Criteria

Professional design

Expected Properties

Value of the Design

Decision

Approved Design

Observation

Induction

Deduction

Testing

Problem

Facts

Hypotheses

Predictions

Veracity of Hypotheses

Evaluation

New Knowledge

Fig. 3-3. The Basic Design Cycle (centre) with the Waterfall Model (left) and the Basic Cycle of

Scientific Inquiry (right), (adapted from Roozenburg and Eekels 1995)

62

www.manaraa.com

Limitations. The primary limitation of The Basic Design Cycle is evident in its similarity to the Waterfall

Model (with backtracking). Like the Waterfall Model, it does not apply to situations where the designer

begins with inspiration and moves immediately to building the design object.

3.3.2 The Problem-Design Exploration Model

Maher et al. (1995) suggest a formal model of exploration intended to describe how an artifact (not

necessarily software) may be designed by genetic algorithms (Figure 3-4). Design is modeled as two

interacting evolutionary systems – the problem space P and the solution space S. At time t, P(t) contains

the design goal and associated requirements; while S(t) “defines the current search space for design

solutions” (p. 5). These two systems interact over time through three different processes. First, S(t) is

generated by searching for an artifact that satisfies the design goal represented by P(t) – the Focus, Fitness

process. Second, S(t) “prompts new requirements for P(t+1) which were not in the original problem

space, P(t)” (p. 5) – “refocusing” the problem space. Third, both the problem space and solution space

evolve over time.

Fig. 3-4. Problem-Design Exploration Model (adapted from Maher et al. 1995)

Notes: P(t) = problem at time t; S(t) = situation at a time t; dashed line indicates situation refocusing problem;

diagonal downward movement indicates a search process.

63

www.manaraa.com

Limitations. The primary limitation of the Problem-Design Exploration Model is that it applies

specifically to design using evolutionary algorithms. However, Maher et al.’s principle result (co-

evolution) has been supported by a protocol study of industrial designers (Dorst and Cross 2001) and a

similar study of software designers using object-oriented methods (Purao et al. 2002). Therefore, the

principle of representing design as two co-evolving systems may inform general design theories.

3.3.3 Alexanderʼs Design Processes

Alexander (1964) differentiates form (the object being designed) from context (the object’s environment)

and argues that a design’s quality results from the fit between its form and its context. He then suggests

three “possible kinds of design process” (p. 75) (Figure 3-5).

C1

C2 F2

F1 Actual World

Mental Picture

C1 F1 Actual World

C1

C2 F2

F1 Actual World

Mental Picture

C3 F3 Formal Picture of
Mental Picture

Unselfconscious
Process

Selfconscious
Process

Formal Process

Context Form

Context Form

Context Form

Fig. 3-5. Alexander’s Design Processes (adapted from Alexander 1964)

Note: arrows indicate interactions (not sequence); Alexander does not specify the exact nature of these interactions.

64

www.manaraa.com

In the “Unselfconscious Process”, the designer directly manipulates the design object and other items in

the external world to eliminate misfits between form and context. In this case, the designer “is unlikely to

impose any “designed” conception on the form” (p. 77). For example, an igloo dweller may directly

manipulate the igloo’s structure to respond to temperature changes – creating vents when the temperature

rises and eliminating them when the temperature falls.

In the “Selfconscious Process”, the “design process is remote from the ensemble itself; form is shaped not

by interaction between the actual context's demands and the actual inadequacies of the form, but by a

conceptual interaction between the conceptual picture of the context which the designer has learned and

invented, on the one hand, and ideas and diagrams and drawings which stand for forms, on the other” (p.

75). For instance, a person building a new deck may observe the house and land, forming a mental

conception of the situation, and then draw a rough sketch of the desired deck. He may refine this sketch

several times, while comparing it to his conception of the situation, before eventually building the deck

based on the sketch. Alexander suggests that the exact nature of the interaction between mental pictures

of form and context is unclear.

In the third (unnamed) process, the designer creates a formal model of the mental pictures. Then, “the

design F2 is preceded by an orderly complex of diagrams F3” (p.78), which constitute a formal model of

the form. Alexander argues that both formal models may be represented using set theory – the problem is

defined by the set of potential misfits and the solution is defined by the set of its properties. The designer

may then decompose the problem into cohesive subproblems using its set-theoretical description and

solve each by exploring a “hunch”, using a constructive diagram of a potential form in its context. The

solutions of the subproblems may then be combined to solve the original problem.

Limitations of the Selfconscious Process. Two principal limitations are common to all of Alexander’s

Processes. First, the concepts and relationships are not well-defined; indeed, Alexander explicitly

expresses that the relationship between the two mental pictures is unclear. Second, concerning software

design specifically, several important concepts (e.g., goals, testing) are missing.
65

www.manaraa.com

3.3.4 The Function-Behavior-Structure Framework

Gero (1990) presented an engineering design meta-process, the Function-Behavior-Structure Framework

(FBS), whose core claim is that “the purpose of designing is to transform function, F (where F is a set),

into a design description, D, in such a way that the artefact being described is capable of producing those

functions” (Gero 1990, p. 2, original italics). Gero further posits three intermediate artifacts – structure,

predicted behavior of the structure, and expected (desired) behavior of the structure. The designer

figuratively walks a path from function through behavior and structure to design description; FBS

specifies the possible paths.

Vermaas and Dorst (2007) point out “that the conceptual framework underlying the FBS-model is

unstable” (p. 143); more specifically, the definitions of function, behavior and structure have changed (cf.

Gero 1990; Gero and Kannengiesser 2004; Gero and Kannengiesser 2007; Rosenman and Gero 1998).

Vermaas and Dorst also suggest that these definitions are likely to change again as “Gero and

collaborators are uncertain about making a distinction between the concepts of purpose and function” (p.

143) and as function has a pre-established meaning in other sciences that is inconsistent with Gero’s

definition. Moreover, FBS has been analyzed and re-interpreted by authors other than its originator (e.g.,

Galle 2009). Its continuing evolution impedes a definitive account; therefore, I summarize its evolution to

capture its primary concepts, relationships and disagreements.

Evolution of the FBS Framework. In Gero’s (1990) original account (Figure 3-6), FBS had five artifacts

(Table 3-4) and six operations (Table 3-5). Although synthesis was not shown in the original model, it was

discussed in the original paper and is shown in later versions (below).

66

www.manaraa.com

F S D

Be Bs

Transformation

Occasional

Transformation

Comparison

Fig. 3-6. Original FBS Framework (adapted from Gero 1990)

Table 3-4. Artifacts of the FBS Framework (adapted from Gero 1990)

Symbol Meaning

Be expected (desired) behavior of the structure

Bs “the predicted behavior of the structure” (p. 3)

D a graphically, numerically and/or textually represented model that transfers “sufficient information
about the designed artefact so that it can be manufactured, fabricated or constructed” (p. 2)

F “the expectations of the purposes of the resulting artefact” (p. 2)

S “the artefact's elements and their relationships” (p. 2)

Table 3-5. Operations of the FBS Framework (adapted from Gero 1990)

Operation Inputs Outputs Meaning

Analysis S Bs the process of deriving the behavior of a structure

Catalog Lookup F S selecting a known structure that performs the required function
Evaluation Bs & Be Differences

Between Bs and Be
comparing predicted behavior to expected behavior and determining
whether the structure is capable of producing the functions

Formulation F Be deriving expected (desired) behaviors from the set of functions

Production of
Design
Documentation

S D transforming structure into design description suitable for manufacturing

Synthesis Be S & Bs “expected behavior is used in the selection and combination of structure
based on a knowledge of the behaviors produced by that structure” (p. 3)

To illustrate, the designer may begin with a desired function (carry a minimum of 2000 vehicles across

the water from City X to City Y each day). First, the designer looks for a existing solution (catalog

lookup). If one is not found, the designer transforms the function into a set of expected behaviors (object

floats, object moves at up to 20 knots). The designer then selects and combines structures to perform the

67

www.manaraa.com

function (engines, fuel lines, navigation systems). During this synthesis step, the designer does not

combine tangible objects in the physical world, rather, symbolic representations thereof. The next step is

to predict how the structure will behave, perhaps by running a computer simulation. The designer than

compares the predicted behaviors of the structure to its expected behaviors and, if they are sufficiently

similar, generates a detailed description of the structure for manufacturing. If the predicted behaviors do

not match the expected behaviors, the designer engages in a cycle of synthesis, analysis and evaluation

until they do. The design description generated, the engineering process is complete and the tangible

object may be fabricated.

Gero (1990) also briefly discussed reformulation (modifying functions and expected behavior based on

changes in structure). Three types of reformulation were identified by Gero et al. (2004) – functional,

behavioral and structural (Table 3-6). Figure 3-7 shows FBS updated with the synthesis transformation

and three reformulation feedback loops.

Table 3-6. Feedback Loops of the FBS Framework (adapted from Gero and Kannengiesser 2004)

Operation Inputs Outputs Meaning

Structural
Reformulation

S, Bs S modifying the structure based on the structure and its predicted behaviors

Behavioral
Reformulation

S, Bs &
Be

Be modifying the expected behaviors based on the structure and its predicted
behaviors

Functional
Reformulation

S, Bs & F F, modifying the set of functions based on the structure and its predicted
behaviors

The Situated FBS Framework. Gero and Kannengiesser (2004) updated FBS to include the idea of

situatedness (“the agent’s view of a world changes depending on what the agent does” p. 90), leading to

distinction between three worlds.

The external world is the world that is composed of representations outside the designer or

design agent. The interpreted world is the world that is built up inside the designer or design

agent in terms of sensory experiences, percepts and concepts. It is the internal representation

68

www.manaraa.com

of that part of the external world that the designer interacts with. The expected world is the

world imagined actions will produce (p. 93).

Fig. 3-7. The Function-Behavior-Structure Framework (adapted from Kruchten 2005)

Gero and Kannengiesser (2004) argued that function, behavior and structure have representations in each

world and mapped the eight transformations and comparisons (now better thought of as processes) of

FBS into 20 activities across the three worlds. The three-world metaphor, nine representations, eight

processes and 20 activities comprise the Situated FBS Framework (Figure 3-8). However, since the

notation and definitions assigned to the elements of the framework change in Gero and Kannengiesser

(2007) and are not abundantly clear in either paper, I provide (next) an informal summary rather than

formal definitions.

“The framework represents [given] external requirements related to the function (FRe), behaviour (BRe)

and structure (SRe)” of the design problem (Gero and Kannengiesser 2007, p. 15). Si is the design agent’s

conceptualization of the “design solution in terms of a point in the structure state space” (p. 16). Bi and Fi

are the design agent’s conceptualizations of the how Si will behave and the functions it will be capable of

producing, were it constructed.

F S D

Be Bs

DocumentationCatalog Lookup

Evaluation

Structural Reformulation

Behavioral
Reformulation

Functional
Reformulation

Synthesis

Transformation

Occasional
Transformation

Comparison

69

www.manaraa.com

Sei, Bei and Fei represent the design agent’s expectations about the structure, behavior and function of the

design solution, respectively. Bi and Fi differ temporally from Bei and Fei – the latter represent the

designer’s expectations before any form of testing, simulation or predictive analysis, whereas the former

result from testing, simulation or predictive analysis on the design solution. Therefore, expectations may

change when Bi and Fi are compared to Bei and Fei.

Fig. 3-8. The Situated FBS Framework (after Gero and Kannengiesser 2007)

“The structure (S) of most objects can be described in terms of geometry, topology and material” (Gero

and Kannengiesser 2007, p. 2). The design agent manifests Se in the external world ‘by sketching or some

similar process” (p. 383). Hence, Se is an abstract representation of a point in the structure state space, not

the designed object. As Se is a representation, it is not capable of behavior or function; therefore, Be and

Fe are predictions rather than observations (as results of simulations are predictions). Gero and

Kannengiesser (2004) explain that Be and Fe comprise the design documentation (along with Se) and may
70

www.manaraa.com

serve as inputs for behavioral and functional reformulations, respectively. Be and Fe are produced by the

documentation process (see below), not the evaluation process, further supporting the point that Se is an

abstraction. Si and Sei are the designer’s interpretations of structure and expected structure, respectively

(see below).

The activities in Figure 3-8 map into the processes in Figure 3-7 (Gero and Kannengiesser 2004) (Table

3-7). The twenty activities are neither named nor individually discussed in Gero and Kannengiesser

(2004,2007). Moreover, “the numbering of the eight design steps and the 20 activities in the situated FBS

Framework does not prescribe a fixed order of execution” (Gero and Kannengiesser 2007, p. 20).

Table 3-7. Meaning of Situated FBS Framework Processes (after Gero and Kannengiesser 2007)

Process Meaning Activities

Formulation deriving expected (desired) behaviors from the set of functions 1 through 10
Synthesis “expected behavior is used in the selection and combination of structure based on

a knowledge of the behaviors produced by that structure” (p. 3)
11, 12

Analysis the process of deriving the behavior of a structure 13, 14

Evaluation comparing predicted behavior to expected behavior and determining whether the
structure is capable of producing the functions

15

Documentation transforming the structure into a design description that is suitable for
manufacturing

12, 17, 18

Structural
Reformulation

modifying the structure based on the structure and its predicted behaviors 9 (possibly driven by
3, 6 or 13)

Behavioral
Reformulation

modifying the expected behaviors based on the structure and its predicted
behaviors

8 (possibly driven by
2, 5, 14 or 19)

Functional
Reformulation

modifying the set of functions based on the structure and its predicted behaviors 7 (possibly driven by
1, 4, 16 or 20)

Galle’s Interpretations and Revisions. Galle (2009) pointed out that FBS implies that the design artifact

exists before it has been designed (if structure is defined as “the artefact's elements and their

relationships” (Gero 1990, p. 2), structure is a property of an object; hence, the design object must be

present for structure to exist). Yet, if the design object is complete, so must be the design, leading to a

contradiction. Galle then suggested two interpretations of the framework, and two corresponding

modifications to resolve the difficulty.

71

www.manaraa.com

In the nominalist interpretation, F, B and S “stand for function-descriptions (disposition-descriptions),

behaviour-descriptions, and structure-descriptions” (Galle 2009, p. 7). Therefore, F, B and S can exist

independently of any particular artifact, and FBS “becomes a model of a process of symbol

manipulation” (Galle 2009, p. 7, original italics). Galle provides several quotations from the FBS-

Framework’s originators and proponents consistent with this description view, e.g., “Gero and

Kannengiesser (2004, p. 374) state that ‘the basis for Gero’s FBS framework is formed by three classes of

variables describing different aspects of a design object’, namely ‘Function (F) variables’, ‘Behaviour (B)

variables’, and ‘Structure (S) variables’” (p. 8). However, Galle argues, defining F, B and S as

descriptions makes the “production of design description” step superfluous. Considering these arguments,

Galle recommends a “nominalist modification” where F, B and S are explicitly defined as descriptions

and the documentation step is eliminated. This seems consistent with the presentation of the Situated FBS

Framework, summarized above, in two ways: 1) the documentation step in the Situated FBS Framework

is simply the generation of F, B and S in the external world; 2) the external world is “the world that is

composed of representations outside the designer,” (Gero and Kannengiesser 2004, p. 93, italics added),

from the F, B and S in the designer’s mind; hence, F, B and S are representations.

In the realist interpretation, F, B and S are interpreted as “refer to functions, behaviours and structures

that are regarded as entities in their own right even in the absence of, and prior to the making of, any

artefact to ‘have’ them” (Galle 2009, p. 8). Here, F, B and S are real in the same philosophical sense as

numbers and constructs. While considering functions and behaviors as abstract dispositions seems

plausible, Galle concludes that “the FBS model as currently known is not amenable to the remedy of

conceiving of artefact-structure as an entity in its own right” (p. 9). To overcome this limitation, Galle

proposes redefining structure as a mapping of a set of materials into a 3D Euclidean space, and makes “a

sharp distinction … between a structure, and material objects embodying that structure” (p. 12). Galle

does not explain how these revisions translate into FBS transformations.

72

www.manaraa.com

Summary of FBS Framework Evolution. In summary, FBS was originally introduced by Gero (1990)

and later updated to include the concept of “situatedness” by Gero and Kannengiesser (2004). Vermaas

and Dorst (2007) critiqued the framework and argued for a new definition of function; meanwhile Gero

and Kannengiesser (2007) attempted to clarify the framework’s underlying ontology. Most recently, Galle

(2009) criticized the framework for referring to artifacts before they existed and proposed two

modification strategies to overcome this problem.

Limitations. Overall, FBS is a well-defined, thoroughly thought-out, specific theory. Its primary

limitation is its lack of empirical validation. Beyond this, several criticisms are possible.

1. It is not clearly explained how Si differs from Sei in the Situated FBS Framework (Gero and

Kannengiesser 2004). Specifically, it is not clear how the design agent’s expectations about

structure differ from its interpretations of the structure. (Gero may be suggesting that a design agent

may engage in a cycle of forming expectations, externalizing them as a cognitive aid and then

reinterpreting the expectations based on the aid, but this is not explained.)

2. As above, definitions of core concepts continue to change.

3. FBS is both “a descriptive model aimed at describing actual designing and … a prescriptive model

aimed at improving designing” (Vermaas and Dorst 2007, p. 133); i.e., some confusion exists

concerning whether FBS is a theory or a method (§3.3.5).

3.3.5 Analysis of Theoretical Contributions

Theory Type. A process theory is an explanation of how and why an entity changes and develops

(Appendix C). Van de Ven and Poole (1995) classified organizational process theories into four categories

– lifecycle, dialectic, evolutionary and teleological (Table 3-8). None of the contributions presented in

this section are called process theories; however, here I discuss whether each fits the definition. A

description qualifies as a process theory if it meets the following three criteria (Van de Ven and Poole

1995).

73

www.manaraa.com

1. It posits a formative relationship between a higher level phenomena (e.g., design) and several

lower-level phenomena (e.g., constructing a model, identifying expected behaviors).

2. It includes a causal motor (dialectic, evolutionary, lifecycle, teleological).

3. It includes a claim to universality within a domain (e.g., the Problem Design Exploration Model is

supposed to explain all design (universality) using evolutionary algorithms (domain)).

Table 3-8. Analysis of Types of Process Theories (Van de Ven and Poole 1995)

Type of Process
Theory

Dialectic Evolutionary Lifecycle Teleological

Proponents (Plato; Hegel; Van de
Ven et al. 1995)

(Darwin; Van de Ven et al.
1995)

(Markus and Robey 1988;
Van de Ven and Poole
1995)

(Churchman 1971; Singer
1959; Van de Ven and
Poole 1995)

Capsule
Description

Changes result from
shifts in power among
conflicting entities

A population of entities
changes as less fit entities
expire and remaining
entities change and
recombine

An entity progresses
through a series of stages
in a predefined sequence

An agent purposefully
selects and takes actions to
achieve a goal

Event
Progression

Recurrent,
discontinuous
sequence of conflict
and resolution

Recurrent, cumulative and
probabilistic sequence of
variation, selection and
retention

Linear & irreversible
sequence of prescribed
stages

Recurrent, agent-
determined sequence of
goal setting and action
taking

Contemporary
Example

Behavioral
Negotiation Theory
(Neal and Northcraft
1991)

Change in populations of
organizations (Carroll and
Hannan 1989)

The Organizational
Lifecycle (Kimberly and
Miles 1980)

Organizational decision
making (March and Simon
1958)

The Basic Design Cycle clearly relates design to lower-level activities (synthesis, simulation, evaluation).

Of the ideal types of process theory identified by Van de Ven and Poole (1995), this is closest to a

lifecycle process theory insofar as it follows a pre-figured sequence of phases where the design

characteristic accumulate across phases. Roozenburg and Eekels “consider The Basic Design Cycle the

most fundamental model of designing” and conjecture that “someone who claims to have solved a design

problem has gone through this cycle at least once” (p. 89). Therefore it is a process theory.

The Problem-Design Exploration Model relates design to lower-level activities (focus, fitness). Of the

ideal types of process theory identified by Van de Ven and Poole (1995), this is clearly an evolutionary

process theory – it explicitly explains design by evolution. Specifically, variation is represented by the

Evolution process, while selection and retention are represented by the Focus/Fitness process. The
74

www.manaraa.com

Problem-Design Exploration Model purports to explains all design by evolutionary algorithms. Therefore,

it is a process theory.

Each of Alexander’s three design processes relate design to one or more unnamed lower-level activities.

However, Alexander explicitly proposed the third process as a reaction to the limitations of the

Selfconscious Process – therefore, the third process is a method, not a process theory. However, both the

Unselfconscious and Selfconscious Processes imply teleological motors – they describe processes

engaged in by a designer (the agent) seeking to eliminate misfits (the goal) with no explicit restriction on

the sequence of activities. Moreover, Alexander claimed that the Unselfconscious Process describes the

design process of ancient cultures and the Selfconscious Process describes the then status quo in

architecture. Therefore, Alexander’s first two “design processes” are process theories.

FBS relates design to lower-level activities including synthesis, analysis and reformulation. Since it

describes processes executed by an agent, which can choose the order of execution, FBS has a

teleological motor. Gero and Kannengiesser (2004) claimed that “the eight processes depicted in the FBS

Framework are … fundamental for all designing” (p. 90). Gero and Kannengiesser (2007) repeated the

claim that the these processes are the “eight fundamental steps in designing” (p. 15). Therefore, it is a

process theory.

Application to Software. Nothing in the The Basic Design Cycle appears to preclude its application to

software. Indeed, if software development practice reflects the Technical Problem-Solving paradigm, The

Basic Design Cycle may provide a reasonable, high-level view of the process. In contrast, the Problem-

Design Exploration Model would apply only where the software were designed by genetic algorithm.

Alexander’s Unselfconscious Process describes design of tangible objects in a physical context. As

software is an intangible artifact and exists in a virtual context, the Unselfconscious Process does not

apply to software design. In contrast, Alexander’s Selfconscious Process separates conceptualizing of an

artifact from its manifestation in reality. The transition from context to mental picture of context appears

75

www.manaraa.com

consistent with the ideas of systems analysis and requirements engineering. The transition from mental

picture of form to form itself appears consistent with the act of coding. Furthermore interaction between

mental pictures of context and form appears consistent with the act of devising the software’s structure

from goals. Therefore, the Selfconscious Process appears applicable to software design.

FBS is primarily intended for material objects, as revealed by the definition of structure: “Structure (S) of

an object is defined as its components and their relationships, i.e. “what the object consists of”. The

structure (S) of most objects can be described in terms of geometry, topology and material” (Gero and

Kannengiesser 2007, p. 2, original italics). Therefore, applying it to software requires some degree of

interpretation or adaptation. At least two interpretations are possible: one provided by Kruchten (2005),

and one more consistent with Galle’s nominalist interpretation.

Kruchten (2005) attempted to “cast” software design in FBS by mapping the artifacts and processes of the

Rational Unified Process (Kruchten 2003) and the Waterfall Model into FBS. In doing so, he mapped

software code into S, and redefines documentation from the act that “produces the design description (D)

for constructing or manufacturing” (p. 54) to “completing the bill of materials and preparing a master

CD-ROM with the installers, binaries, data, help files, and other elements to be reproduced and

delivered” (p. 55). This is a significant adaptation in the sense that, while both physical (e.g., robotic

submarines) and software artifacts (e.g., web browsers) are created and deployed, the original FBS

Framework includes neither creation nor deployment – “The result of the activity of designing is a design

description. This design description generally is represented graphically, numerically, and/or textually.

The purpose of such a description is to transfer sufficient information about the designed artefact so that it

can be manufactured, fabricated or constructed” (Gero 1990, p. 2). Similarly, the situated FBS-

Framework ends with artifacts in the external world, “the world that is composed of representations

outside the designer or design agent” (Gero and Kannengiesser 2004, p. 377, italics added), not physical

artifacts. In summary, to make FBS more amenable to the software domain, Kruchten (2005) moves the

76

www.manaraa.com

object being designed and the processes of creation and deployment into FBS. Henceforth I refer to this

as the “consolidated interpretation” of FBS.

Alternatively, one can adopt a perspective more consistent with Galle’s (2009) nominalist interpretation

by assuming the F, B and S, are descriptions. These can then be mapped into common software design

arftifacts: function-description include software goals; structure-description includes models of the

software’s architecture; behavior-description includes the software requirements (Be) and predicted

behavior based on inspection or simulation of the structure-description (Bs). Hence, the FBS-Framework

remains a model of a process of symbol manipulation and creation and deployment of the design object

remain outside of its scope. In keeping with Galle’s (2009), I refer to this as the “nominalist

interpretation” of FBS.

Design Paradigm Affiliation. As The Basic Design Cycle assumes a given problem, emphasizes

planning and separates analysis from synthesis, it is more compatible with Technical Problem-Solving.

Roozenburg and Eekels state explicitly that “the problem-solving model of systems engineering” is “quite

close to The Basic Design Cycle” (p. 87). Moreover, they refer repeatedly to “optimising” and equate The

Basic Design Cycle with the basic cycle of empirical scientific inquiry (positivism), clearly aligning The

Basic Design Cycle with Technical Problem-Solving.

The Problem-Design Exploration Model assumes a bounded problem space and is built on a search

metaphor. This suggests compatibility with Technical Problem-Solving. However, co-evolution of

problem and solution spaces superficially suggests a constructivist epistemology, consistent with

Reflection-in-Action. On closer examination, however, the problem space here refers to the system

requirements, rather than the physical or virtual environment the design artifact is intended to inhabit.

Therefore, this model posits co-evolving sets of requirements and design features (consistent with

Technical Problem-Solving), rather than the coevolution of actual context and design artifact (consistent

with Reflection-in-Action). Consequently, The Problem-Design Exploration Model is more consistent

with Technical Problem-Solving.
77

www.manaraa.com

In Alexander’s Unselfconscious and Selfconscious Processes, the designer considers an unbounded

problem, acts on hunches, and simultaneously alters (or considers) the design object and context (or

mental pictures thereof), making them more compatible with Reflection-in-Action.

FBS’s design paradigm affiliation depends on the interpretation applied. Under the nominalist

interpretation, FBS appears closer to Technical Problem-Solving than to Reflection-in-Action for at least

two reasons. First, Gero and Kannengiesser (2004) describe the solution structure as a point in a structure

state space, composed of a definitive number of relevant structure variables. This indicates that FBS

applies to bounded problems. Second, the Technical Problem-Solving idea of an agent using scientific

methods and techniques is exemplified by the prediction of behavior from a structure-description. The

analysis process involves “deriving” behavior from structure, a term connoting a scientific approach

rather than mere guessing. Third, being “a model of a process of symbol manipulation” (Galle 2009, p.

7); FBS’s guiding metaphor is information processing, as in Technical Problem-Solving.

Under the consolidated interpretation, the situation is less clear. Here, FBS assumes a given problem (F),

which is consistent with Technical Problem Solving. However, the designer iterates on the design object

itself, rather than an abstraction, forcing the design process out of the designer’s cognitive system.

Meanwhile, analysis and testing of the design object, including post-deployment testing in a real-world

context make the process at least partially constructivist, which is more consistent with Reflection-in-

Action.

Summary of Analysis. In summary, both Technical Problem-Solving and Reflection-in-Action are

associated with a teleological process theory applicable to software (Table 3-9); however, the concepts

and relationships of the Selfconscious Process are not formally defined.

78

www.manaraa.com

Table 3-9. Comparison of Design Process Theories

Theory Proponent Ideal Type Paradigm Applicable to Software?

The Basic Design Cycle (Roozenburg et al.
1995)

Lifecycle Technical Problem-Solving Yes

Problem-Design Exploration Model (Maher et al. 1995) Evolutionary Technical Problem-Solving Partially*
Unselfconscious Process (Alexander 1964) Teleological Reflection-in-Action No
Selfconscious Process (Alexander 1964) Teleological Reflection-in-Action Yes
(Situated) FBS Framework (Gero 1990; Gero

et al. 2004)
Teleological Depends on interpretation Yes

*Note: The Problem Design Exploration Model only applies to software designed using genetic algorithms.

3.4 REASON- AND ACTION-CENTRIC PERSPECTIVES

3.4.1 Defining the Two Perspectives

The preceding sections presented two incompatible design paradigms and classified a wide swath of the

design concepts, methods and theories according to these paradigms. Here I identify core beliefs

underlying this classification and enumerate the elements compatible with each perspective.

To review, the Technical Problem-Solving paradigm intuitively appears compatible with positivism, the

cognitivist (plan-centric) theory of human action, a designer-as-information-processor metaphor, The

Basic Design Cycle, the Problem-Design Exploration Model, FBS (nominalist interpretation), plan-driven

SDMs including the Waterfall Model, and a narrow interpretation of the scope of design. These concepts

are all “reason-centric” – they assume a logical, (boundedly-)rational designer, methodically creating or

refining a design object according to a pre-programmed frame. More generally, the Reason-Centric

Perspective (RCP) holds that design is a cognitive phenomenon – it occurs primarily within the designer’s

cognitive system. (This does not preclude externalizing cognition using diagrams or other boundary

objects.)

In contrast, Reflection-in-Action intuitively appears compatible with constructivism, the

ethnomethodological (improvisation-centric) view of human action, a design-as-creativity metaphor,

79

www.manaraa.com

Alexander’s process theories, agile SDMs, amethodical development and a broad interpretation of the

scope of design. These concepts are all “action-centric” – they focus on the designer’s actions, not

thoughts. More generally, the Action-Centric Perspective (ACP) holds that design is an emergent

phenomenon comprising continuous interactions between designers and their environment. “Emergence

… refers to the arising of novel and coherent structures, patterns and properties during the process of self-

organization in complex systems” (Goldstein 1999).

Table 3-10 summarizes RCP and ACP – they may be defined as follows.

Reason-Centric Perspective (RCP): 1) The belief that design is a cognitive phenomenon; 2)

the collection of paradigms, models, methodics and theories associated with this belief.

Action-Centric Perspective (ACP): 1) The belief that design is an emergent phenomenon; 2)

the collection of paradigms, models, methodics and theories associated with this belief.

I posit that the conceptual tension between RCP and ACP manifests in real-world design projects, design

education and design science. For example:

• Beck (2005) discussed common tensions between managers attempting to drive projects through cost

estimates and developers unable to make reliable estimates. The developers cannot provide accurate

estimates because they neither conceptualize their work through detailed plans, nor have sufficient

information about the problem to accurately estimate its solution’s difficulty.

• Graham (2003) explained misalignment between programming education and practice – “I was

taught in college that one ought to figure out a program completely on paper before even going near

a computer. I found that I did not program this way.... I tended to just spew out code that was

hopelessly broken, and gradually beat it into shape.”

• Truex et al. (2000) identified the tension between the largely nonempirical literature on SDMs, which

takes for granted that design is inherently methodical, and empirical literature on amethodical

development, which consistently finds that design is not methodical.

80

www.manaraa.com

Table 3-10. Summary of Reason- and Action-Centric Perspectives

Dimension Reason-Centric Perspective Action-Centric Perspective

Design Paradigm Technical Problem-Solving Reflection-in-Action
 Primary Proponent Simon (1996) Schön (1983)
 Epistemology Positivist Constructivist

 Theory of Action Cognitivist Ethnomethodological
 Designer information processor / rational agent person constructing his or her reality
 Design Problem given evaluation criteria for alternatives, which

are representable as points in a problem space
essentially unique and poorly understood at the
start

 Design Knowledge knowledge of design procedures and scientific
laws

artistry of design: when to apply which procedure /
piece of knowledge

 Guiding Metaphor Information Processing Creativity
Process Theories FBS Framework, Basic Design Cycle Selfconscious Process
Related Methods Waterfall Model, Rational Unified Process Agile Methods, Amethodical Development
Related Models Model of Technical Rationality Design Process I/O Model
Scope of Design phase between analysis and implementation everything from intention to completed project

3.4.2 How to Test Perspectives

As mentioned above, “the concept of method ... occupies an extremely privileged status in formal

information systems development thought” (Truex et al. 2000, p. 54). RCP has occupied an analogously

privileged status in design research despite little empirical evidence concerning its assumptions and

ramifications. As the Reason and Action-Centric Perspectives are very general, ontological notions, it is

not clear how to test them directly vis-à-vis either their empirical accuracy or usefulness. Furthermore,

testing SDMs is fraught with difficulties (ch. 1) and it is unclear how conclusions concerning specific

SDMs generate insight into their associated perspectives. In contrast, testing the usefulness of Technical

Problem-Solving and Reflection-in-Action is possible – Dorst and Dijkhuis (1995) evaluated the

descriptive capabilities of both using a protocol study of individual industrial designers, finding that

design activities could be coded according to either. However, how to test the explanatory validity of

these broad models remains unclear.

Nevertheless, process theories such as FBS can be tested. The claim that FBS is an accurate description of

how software is designed in practice implies predicted, observable characteristics of design projects. For

example, if FBS is accurate, a set of functions (goals) of the software is provided to the developers at the
81

www.manaraa.com

beginning of the project. Moreover, although evidence concerning FBS cannot automatically generalize

to RCP, such evidence on the former may generate specific insights into the latter. For instance, if a set of

functions was not provided during a design project and instead the designers constructed the functions

through iterative interaction with their environment and various stakeholders, it would suggest not only

that FBS is flawed but also that the separation of problem-setting and -solving inherent to Technical

Problem-Solving lacks descriptive validity. This, in turn, would undermine the view of design as a

cognitive, rather than emergent phenomenon, since the goals of the system were emerging from the

interaction between the designers and their environment, rather than being provided. This suggests the

following key methodological insight.

Research Methodology Insight: the Reason- and Action-Centric Perspectives can be tested

by operationalizing each as a specific software design process theory.

Moreover, it may be more methodologically sound to test these process theories comparatively (Poole et

al. 2000; Sober 1999; Wolfe 1994; Yin 2003), that is, to empirically evaluate the descriptive and

explanatory validity of two or more process theories relatively.

3.4.3 Operationalizing the Perspectives

Three process theories identified above are consistent with RCP. The Problem-Design Exploration Model

is inappropriate for operationalizing this perspective as its intended scope (design with genetic

algorithms) is much more narrow. FBS (consolidated interpretation) is inappropriate because it is only

partially consistent with RCP. The Basic Design Cycle and FBS Framework (nominalist interpretation)

are both reasonable choices; however, FBS (nominalist interpretation) is more appropriate for at least

three reasons.

1. It subsumes The Basic Design Cycle, i.e., the latter’s artifacts and process map onto the former.

2. Gero and his collaborators have defined its concepts and relationships, minimizing the interpretation

required for testing it.

82

www.manaraa.com

3. FBS has generated an identifiable body of research and commentary, giving it more academic

credibility and influence.

Therefore, RCP may be operationalized using FBS (nominalist interpretation). This is similar to claiming

RCP represents FBS’s assumptions.

Alexander’s Selfconscious Process is the only existing process theory consistent with Reflection-in-

Action and applicable to software design, providing a solid foundation for a design process theory as it is

relatively simple and posits concepts that are difficult to deny. That designing leads to a conceptual or

physical form (design object) and that this form exists in a context (environment) are central to design by

definition (ch. 2). The conjecture that a design agent forms beliefs about both form and context is often

assumed in design literature (e.g., Dorst and Cross 2001) and is supported by empirical studies (e.g.,

Purao et al. 2002; Schön 1983). Furthermore, although Alexander admits that the nature of the

relationship between the two mental pictures is unclear, this relationship is found in other studies (e.g.,

Dorst and Cross 2001; Purao et al. 2002) and is the basis for mapping theories of design (Appendix D).

Therefore, while the Selfconscious Process may provide a basis for a software design process theory

consistent with ACP, further theory development is required. Several requirements for such a theory are

discussed next.

3.4.4 New Theory Criteria

Based on the preceding discussion, I identify the following criteria for a new design theory.

• Action-Centric. The proposed theory must be consistent with elements of ACP, including

Reflection-in-Action.

• Teleological Process Theory. Obviously, comparing unlike theory types (e.g., process theory to

variance theory) would be problematic. Therefore, to facilitate comparison with FBS, a process

theory is required. Van de Ven and Poole (1995) explain that theories with different causal motors

(e.g., dialectic, evolutionary) may all describe the same phenomenon. However, as “design belongs

83

www.manaraa.com

to the category of behavior called teleological, i.e., ‘goal seeking’ behavior” (Churchman 1971, p. 5),

and FBS is teleological, it would be best if the proposed theory shared this causal motor.

• Overcome Limitations of Selfconscious Process. The proposed theory must overcome the two

limitations of the Selfconscious Process identified above: 1) the absence of clearly defined concepts

and relationships, which obstructs application of the theory; 2) the absence of elements fundamental

to software design.

• Testable Propositions. The proposed theory should lead to testable propositions; i.e., predictions

concerning design projects, observably different from predictions generated from FBS.

• Face Validity. The proposed theory should be plausible on its face, given Action-Centric

assumptions, how FBS is plausible given Reason-Centric assumptions.

• Usefulness. As stated above, the proposed theory should facilitate empirical design research by

providing a testable FBS Framework alternative. Moreover, if the proposed theory is supported, it

should be practically useful.

3.5 PROPOSING THE SCI FRAMEWORK

3.5.1 The Sensemaking-Coevolution-Implementation Framework (SCI)

This section describes how a software design process theory was generated from existing literature. The

theory generation is shown in four steps with rationale; precise definitions are provided in Section 3.5.2.

I begin with Alexander’s (1964) Selfconscious Process (Figure 3-5), the plausibility of which was

established in §3.3.3. The first step (Figure 3-9) is to give the concepts in the Selfconscious Process more

convenient labels. I rename C1 (Context) to “Environment” and F1 (Form) to “Design Object” for

consistency with the Design Process I/O Model. The renaming of C2 and F2 follow the same logic. The

cloud symbol is used to indicate the environment’s unbounded nature. The rectangle indicates that the

Design Object is a conceptual object (it exists in the world outside the designer), while rounded

rectangles indicate that the mental pictures do not exist outside of the design agent.

84

www.manaraa.com

Mental
Picture of

Environment

Mental
Picture of

Design Object

Design
ObjectEnvironment

C1

C2 F2

F1

Context Form

Fig. 3-9. Theory Development Step 1

The second step (Figure 3-10) is to label the three relationships, each of which represents a fundamental

activity of software design. Diamond icons indicate relationships (as in an Entity-Relationship Diagram).

The first activity is one where the design agent organizes its perceptions to create a meaningful mental

picture of the environment. “To convert a problematic situation to a problem, a practitioner must … make

sense of an uncertain situation that initially makes no sense” (Schön 1983, p. 40). While Schön calls this

“framing,” the organizational literature terms it sensemaking (Weick 1995). Sensemaking refers to “the

process by which individuals (or organizations) create an understanding so that they can act in a

principled and informed manner”.2 Henceforth, I use the term sensemaking, since this further ties the

proposed theory to existing organizational literature.

The relationship between the mental pictures of the environment and the design object is labeled

coevolution (after Dorst and Cross 2001; Maher et al. 1995). Coevolution refers to the mutual, iterative

refinement of the design agents mental pictures of the environment and design object. A good example of

this is provided Dorst et. al.’s protocol study:

A seed of coherent information was formed in the assignment information, and helped to

crystallise a core solution idea. This core solution idea changed the designer’s view of the

problem. We then observed designers redefining the problem, and checking whether this fits

85

2 From the Intelligent Systems Laboratory Glossary of Sensemaking Terms, available: http://www2.parc.com/istl/
groups/hdi/sensemaking/glossary.htm (accessed Jan 28, 2009).

http://www2.parc.com/istl/groups/hdi/sensemaking/glossary.htm
http://www2.parc.com/istl/groups/hdi/sensemaking/glossary.htm
http://www2.parc.com/istl/groups/hdi/sensemaking/glossary.htm
http://www2.parc.com/istl/groups/hdi/sensemaking/glossary.htm

www.manaraa.com

in with earlier solution-ideas. Then they modified the fledgling-solution they had (Dorst and

Cross 2001, p. 434).

Mental
Picture of

Environment

Sensemaking

Mental Picture
of Design

Object

Implementation

Design Object

Coevolution

Environment

Input
Output

Fig. 3-10. Theory Development Step 2

Many authors consider the idea of a designer mutually and iteratively refining mental pictures of the

environment (/ problem / context / problem space) and the design object (/ form / solution space) central

to software development (§3.3.2).

The relationship wherein the mental picture of the design object is realized in the actual design object is

denoted “Implementation” for consistency with the software industry vernacular (cf. Bourque and Dupuis

2004). As described in Chapter Two, design ends with the complete specification of the design object,

either in a representation (e.g., architectural blueprints) of the design object or the object itself. Therefore,

defining Implementation as a relationship between the Mental Picture of the Design Object and the

Design Object itself (rather than a representation), embeds in the theory the proposition that no complete

specification of the software is created prior to the software code (see ch. 2).

Given the centrality of these three activities, I call the proposed theory the Sensemaking-Coevolution-

Implementation Framework of Software Design (SCI Framework).

86

www.manaraa.com

The three core activities – sensemaking, coevolution and implementation – are each executed by an agent

(Alexander 1964; Eekels 2000). Figure 3-11 shows the agent explicitly and links it to each of the three

main processes. Though not a controversial point, showing the design agent explicitly (Figure 3-11)

requires a distinction between the agent’s environment and the object’s environment (ch. 2). Obviously,

the environment of designer (e.g., an office with chairs, desks, workstations) is not necessarily equivalent

to the environment of the design object (e.g., the Internet). When a design agent engages in sensemaking,

it considers both its environment and the environment of the existing or would-be design object. I now

relabel Mental Picture of Environment to Mental Picture of Context, where ‘Context’ refers to both

environments. Once the design object exists, it is part of the Design Object’s Environment by definition.

Mental
Picture of
Context

Sensemaking

Design
Agent's

Environment

Design
Agent

Mental Picture
of Design

Object

Implementation

Design Object

Coevolution

Design
Object's

Environment

Input
Output
Composition
Executes

Fig. 3-11. Theory Development Step 3

Finally, I add four concepts from the Design Process Input/Output Model – primitives, goals,

requirements and constraints (Figure 3-12). Primitives are the entities from which the design object is

constructed (ch. 2). In software design, examples of primitives include programming languages, APIs,

design patterns and data structures. Like agents, goals are fundamental to teleological process theories

(Van de Ven and Poole 1995) and a central topic in the requirements engineering literature (Dardenne and

Lamsweerde 1993). Requirements and constraints desired properties of and restrictions on the design

object (ch. 2). (It is not entirely clear if or how requirements differ from constraints and to some extent
87

www.manaraa.com

this is an empirical question; therefore, I include both concepts and leave exploring this distinction to

future work.) Requirements and constraints are central constructs in both prescriptive and theoretical

literature on software and engineering design (Boehm 1988; Bourque and Dupuis 2004; Gregor and Jones

2007; Lyytinen 1987; Sommerville 1996). Goals, requirements and constraints are all part of the design

agent’s mental picture of the context. Although the design agent may employ external representations of

them, goals, requirements and constraints are socially constructed entities, which do not exist in the

physical world independent of social actors such as the design agent.

Mental
Picture of
Context

Sensemaking

Goals

Design
Agent's

Environment

Design Agent

Mental Picture
of Design

Object

Implementation

Design Object

Primitives

Coevolution

Design
Object's

Environment

Requirements

Constraints

Input
Output
Composition
Executes
Unbounded Entity

Object

Mental Entity

Activity

Key

Fig. 3-12. Theory Development Step 4 – The SCI Framework

To clarify, the SCI Framework contains three activities – Sensemaking, Coevolution and Implementation.

The arrows indicate relationships between concepts and activities, not the sequence of activities. Since

implementation depends on the Mental Picture of the Design Object, which is initially generated by the

coevolution process, the design agent must engage in a degree of coevolution before implementation. By

equivalent logic, the design agent must do some sensemaking before beginning coevolution. However,

once the two mental pictures are initially formed, the agent may transition between activities in any order.

An agent-determined activity sequence is an essential characteristic of teleological process theories (Van

de Ven and Poole 1995). Sensemaking, Coevolution and Implementation are activities that an agent may

engage in at will, not phases or preconditions as in a lifecycle theory.
88

www.manaraa.com

3.5.2 SCI Framework Definitions

Tables 3-11 and 3-12 define concepts and relationships, respectively, in the proposed theory and cite

related existing work. The SCI Framework amalgamates research from engineering (including work by

Eekels, Sommerville and Suh), architecture (including work by Alexander), computer science (including

work by Maher and Simon), management (including work by Schön and Weick), product design

(including work by Dorst and Cross) and information systems (including work by Purao and myself).

Table 3-11. Concepts of the SCI Framework

Concept Meaning Sources

Constraints a restriction on a structural or behavioral property of the design object (Simon 1996; Sommerville
1996; Suh 1990), ch. 2

Design Agent an entity or group of entities that is capable of forming intentions and goals
and taking actions to achieve those goals, and that specifies the structural
properties of the design object

(Alexander 1964; Eekels
2000), ch. 2

Design Object’s
Environment

the totality of the surroundings where the design object exists or is intended
to exist

(Alexander 1964), ch. 2

Design Agent’s
Environment

the totality of the surroundings of the design agent (Checkland and Holwell 1998;
Schön 1983) ch. 2

Design Object the software artifact under construction, exclusive of non-software artifacts
such as models and end-user documentation

(Alexander 1964; Eekels
2000), ch. 2

Goals optative statements (which may exist at varying levels of abstraction) about
the effects the design object should have on the design object’s
environment

(Churchman 1971; Dardenne
and Lamsweerde 1993; Suh
1990), ch. 2

Mental Picture of
Context

the collection of all beliefs, held by the design agent, regarding the design
agent’s environment and the design object’s environments

(Alexander 1964; Maher et al.
1995; Purao et al. 2002)

Mental Picture of
Design Object

the collection of all beliefs held and decisions made by the design agent
concerning the design object

(Alexander 1964; Maher et al.
1995; Purao et al. 2002)

Primitives the set of entities from which the design object may be composed (Meyer 1988), ch. 2
Requirements a structural or behavioral property that a design object must possess (Bourque and Dupuis 2004;

Royce 1970; Suh 1990), ch. 2

Table 3-12. Activities of the SCI Framework

Activity Meaning Sources

Sensemaking the process by which the design agent perceives the design agent’s
environment and the design object’s environment and organizes these
perceptions to create or refine the mental picture of context

(Schön 1983; Weick 1995; Weick
et al. 2005)

Coevolution the process by which the design agent simultaneously refines its mental
picture of design object based on its mental picture of context, and vice
versa

(Alexander 1964; Dorst and Cross
2001; Maher et al. 1995; Schön
1983)

Implementation the process by which the design agent generates or updates a design
object using its mental picture of design object

(Alexander 1964; Boehm 1988;
Bourque and Dupuis 2004; Royce
1970)

89

www.manaraa.com

3.5.3 Conceptual Evaluation

Here I discuss the extent to which the SCI Framework meets the criteria described in Section 3.4.2.

• Action-Centric. The proposed theory combines concepts from the Selfconscious Process (Alexander

1964) and the Design Process Input/Output Model (ch. 2). It explicitly includes the four major

concepts and three major relationships from the Selfconscious Process and all of the concepts in the

Design Process I/O Model except intentions and type of object. Intentions are implicit included by

way of the design agent, which forms intentions by definition (Table 3-2). Additionally, as the

proposed theory explains software design, the type of object is always software. The proposed theory

is consistent with ACP and specifically Reflection-in-Action for the same reasons as the

Selfconscious Process and Design Process I/O Model from which it derives.

• Teleological Process Theory. The SCI Framework is an example of a teleological process theory –

an explanation of how and why an entity changes wherein change is manifested by a goal-seeking

agent that engages in activities in a self-determined sequence, and monitors progress (Churchman

1971; Singer 1959; Van de Ven and Poole 1995). Recalling the three criteria from §3.3.5: the SCI

Framework posits a formal relationship between a high-level activity (software design) and the three

lower-level activities for which it is named, it includes the teleological causal motor vis-à-vis the

explicitly represented goal-seeking agent and it claims to apply to all software design. Therefore, it

satisfies all three criteria to be classified as a teleological process theory.

• Overcome Limitations of Selfconscious Process. The primary limitations of the Selfconscious

Process identified above are the absence of clearly defined concepts and relationships and lack of

support for elements fundamental to software design. The proposed theory overcomes the first

through the concept definition tables above. Moreover, unlike the models from which it was

generated, the SCI Framework specifically explains software design. One software-specific aspect is

the use of the design object as the primary iterative artifact rather than, for example technical

drawings, as often used in product design (Roozenburg and Eekels 1995). Another software-specific

90

www.manaraa.com

feature is the strict separation of the design agent’s environment (physical) from that of the design

object (virtual).

• Testable Propositions. The SCI Framework should lead to specific predictions, concerning design

projects, observably differing from predictions generated from FBS. I submit that the two theories

differ in at least three ways:

• whether problem-setting and problem-solving are separate and sequential (FBS Framework) or

cotemporal and inextricably linked (SCI Framework)

• whether the coding process is driven by prefigured decisions (FBS Framework) or evolves

iteratively with the design process (SCI Framework)

• whether designers focus on models (FBS Framework) or code (SCI Framework)

• Face Validity. The plausibility of the SCI Framework may be justified in three ways. Firstly, the SCI

Framework is an elaboration of an influential, pre-existing theory from another discipline,

Alexander’s Selfconscious Process. Therefore, Alexander’s (1964) arguments and evidence for the

Selfconscious Process constitute part of its theoretical basis. Second, each of the concepts and

relationships in the SCI Framework is grounded in existing literature (Tables 3-11, 3-12). This

further evidences the solid theoretical foundation on which the SCI Framework is built. Third, the

core claim of the SCI Framework is that developers must engage in at least three activities to

produce software – making sense of the project context, iterating between ideas about the context

and artifact, and implementing the artifact in code. I submit that the first and third activities are

uncontroversial and that the second is inherent to ACP generally and Reflection-in-Action

specifically; therefore, the SCI Framework is intuitively sensible given Action-Centric assumptions.

• Usefulness. The proposed theory is immediately useful insofar as it facilitates empirical design

research as an alternative against which to test FBS. Furthermore, if the SCI Framework is

supported, it is useful for several practical purposes (§3.6.2). Moreover, the SCI Framework links

three different bodies of research: 1) largely qualitative organizational literature (sensemaking); 2)

general and product design literature (coevolution); 3) computer science and engineering literature

91

www.manaraa.com

(implementation). Hence, the proposed theory may support theory integration across these three

fields.

• Further Evaluation. The SCI Framework is a novel contribution. Although, it extends existing

models by Alexander (1964) and others, the concepts from these models have been elaborated and

combined in a previously unseen manner. Additionally in Section 3.2.7, it was suggested that a

veracious software design process theory would describe the behavior of all designers, not just

‘consciously competent’ designers. I see no a priori reason to believe that any of the three core

activities of the SCI Framework is specific to consciously competent designers. However, an

unconsciously competent designer may not be aware of the engaged-in core activity, while an

incompetent designer may not execute any core activity effectively.

3.5.4 Empirically Evaluating the SCI Framework

Whether the concepts and relationships of the SCI Framework accurately represent how software is

designed in practice is an empirical question. However, due to the complexity of theoretically justifying

the SCI Framework and positioning it as an antithesis to FBS, relative to the Action- and Reason-Centric

Perspectives, empirical testing of the SCI Framework is left to future work (ch. 4). Therefore, this section

demonstrates that such testing is possible, in principle.

In the past, testability was considered a property of an individual theory (Popper 1959). Generally

speaking, a theory was testable if and only if one could establish observations supporting or refuting it.

Following the refutation of logical positivism by Popper and the subsequent refutation of Falsificationism

by philosophers including Feyerabend, Hempel, Lakatos and Quine3, the idea of testability in philosophy

of science began to be perceived as obsolete (Sober 1999). In response, Sober (1999) establishes that

testability is a probabilistic relationship between two theories that make contrasting predictions. This

underlies recommendations by methodologists (e.g., Yin 2003), to evaluate a theory against a plausible

92

3 A full account of the philosophical arguments surrounding testability is beyond the scope of this paper; for more,
see The Stanford Encyclopedia of Philosophy: http://plato.stanford.edu/entries/popper/#Crit

www.manaraa.com

rival theory. Above, I have positioned the SCI Framework as a plausible rival theory to FBS. Both the

FBS and SCI Frameworks are teleological process theories, making them, in a sense, compatible for

comparison.

While one may argue that FBS remains a theoretical straw-man as it lacks empirical support within the

software development domain, the same is true of all of the process theories uncovered by my literature

review. It is appropriate to test the SCI and FBS Frameworks because these are, as far as I can determine,

the best alternatives available.

Hence, taking a comparative approach to testability (Sober 1999), my research question (what is the

process whereby development teams create software, in practice?) may now be operationalized as of the

FBS and SCI Frameworks, which better describes how development teams create software in practice?

Two broad strategies for comparatively evaluating process theories are evident (Figure 3-13). In one

strategy (left), the two frameworks are compared analytically, creating a set of contrasting predictions

(§3.5.3). These predictions may then be evaluated against one or more real situations. The theory that

produces more correct predictions would be supported. (Note that under comparative testability, theories

are not ‘proven’ or ‘falsified’; rather, a theory is supported if it is more valid on a balance of evidence,

than the alternative theory). In the other strategy (right), both frameworks are independently compared to

one or more real situations, producing a base of evidence for (and against) each construct and relationship

of each theory. For example, finding a written requirements document may support the expected behavior

artifact in FBS. These two collections of evidence may then be compared to determine which is more

complete and convincing.

Much less methodological advice is available concerning evaluating process theories than variance

theories; however, Wolfe (1994) identified two common approaches to studying innovation processes –

cross-sectional surveys and in-depth field studies. More generally, Poole et al. (2000) considers three

research designs appropriate to studying change processes – cross-sectional survey, panel (longitudinal)

93

www.manaraa.com

survey and process (field) studies. The first generic strategy described above seems amenable to a survey

approach. For each contrasting prediction identified, a set of survey items may be generated, validated

and given to a random sample of software developers representing diverse organizations. Similarly, the

second strategy appears amenable to a field study. Collecting in-depth, longitudinal data from a small

number of software development teams may provide a rich evidentiary base for each theory. This

evidence may be compared, using an a priori coding scheme based on the two theories, to determine

which is more veracious. Furthermore, combining the two approaches enables multi-method triangulation

– the survey allows for random sampling and reliability, while the field study facilitates gathering deep

insights into developer behaviors and cognitive processes.

FBS
Framework

SCI
Framework

Compare

Alternative
Predictions Reality

Compare

Verdict

FBS
Framework

SCI
Framework

Compare

FBS
Evidence

Reality

Compare

Verdict

Compare

SCI
Evidence

Fig. 3-13. Two Empirical Strategies for Comparing the FBS and SCI Frameworks

In summary, while empirically evaluating the SCI and FBS Frameworks is left to Chapter Four, this

section demonstrates that the SCI Framework is testable, in principle in at least two different ways: 1)

using a survey to evaluate contrasting predictions; 2) using a field study to gather evidence for the

concepts and relationships of each theory.

94

www.manaraa.com

3.5.5 Limitations of Proposed Theory and Future Additions

Firstly, the proposed theory is not a comprehensive enumeration of all design-related activities. I

attempted to include only elements inherent to design (those without which design cannot occur). For

example, a designer may externalize his or her mental picture of the design object using an UML diagram

but, since such diagrams are optional, they are not included. Please note that none of the theories or

models reviewed in this chapter attempt to enumerate all design-related activities; however, Sim and

Duffy (2003) proposed an “ontology of generic engineering design activities” including activities such as

“abstracting”, “decomposing”, “decision making”, “simulating”, and “searching.” If initial empirical

testing of the SCI Framework is promising, it may be useful to map Sim and Duffy’s ontology onto it.

Secondly, as indicated in the introduction, the SCI Framework focuses on process. This omits

characteristics of both the design agent and the design context. While both agent and context are clearly

important, hypothesizing effects of their characteristics would have significantly increased the complexity

of the proposed theory. Therefore, consideration of these topics is left to future research.

Third, it is easy to brainstorm important design-related concepts omitted from the proposed theory,

including time, software quality, politics and power; however, no identified design process theories

address these concepts either. Moreover, while these and many other concepts may play important parts in

software design, at this stage I deem it more important to propose a theory that was as simple and

theoretically grounded as possible. While one may argue endlessly about which concepts are the core

concepts, practically speaking, this is somewhat arbitrary and simply not including a concept in the first

rendering of a new theory does not delegitimize it. Other important and relevant concepts are simply left

for future work. Including a notion of software quality, in particular, is exceedingly complex and

explaining the antecedents of quality is a research program onto itself. Again, if empirical testing supports

the SCI Framework, it may be reasonable to add other concepts.

Fourth, in suggesting a comparative test between the SCI and FBS Frameworks, I have omitted the

possibility that a particular project, firm, or even a whole field, may gradually shift from a process
95

www.manaraa.com

consistent with the SCI Framework to one consistent with the FBS Framework. If, for example, a field’s

body of knowledge grew such that problems became easier to specify and articulate, and systems became

more predictable and exhibited fewer emergent behaviors, its designers might shift to more FBS-like

processes.

3.6 CONCLUSION

3.6.1 Contribution and Scope

As stated above, this chapter’s purpose is to review what is believed about how professionals create

software in practice and to synthesize these beliefs into an empirically testable form. Consequentially, this

chapter contributes to research on software design science in two ways.

First, it reviews diverse literature relevant to software design and discerns a conflict between two

perspectives: Reason-Centric and Action-Centric. This powerful conceptualization aides understanding of

the untested assumptions underlying much design literature and the privileged position of Reason-Centric

assumptions, despite lacking empirical evidence. This is not unlike the primacy of the theories of

rationality and expected utility before they were debunked by psychologists including Kahneman and

Tversky (1979).

Second, it operationalizes each perspective in an empirically testable process theory. RCP is

operationalized by FBS (nominalist interpretation). ACP is operationalized by the SCI Framework, which

was generated by elaborating the Selfconscious Process using concepts from existing literature, including

the Design Process I/O Model, and conceptually evaluated using pre-figured criteria. Positioning the SCI

Framework as an antithesis to FBS and giving suggestions as to their comparative empirical evaluation

constitutes the “empirically testable form” I set out to produce.

Proposing the SCI Framework is a necessary preliminary step to support empirical research in software

design science. I conjecture that defining the SCI Framework and convincingly justifying its concepts and

96

www.manaraa.com

relationships exhibits complexity similar to that of designing and executing a thorough empirical

evaluation of either or both of the SCI or FBS Frameworks. As combining these endeavors would

produce an unreasonably long chapter, this chapter presents the theory building phase and leaves

empirical analysis to future work.

3.6.2 Implications for Academics and Managers

The SCI Framework is immediately useful for facilitating an empirical comparison with FBS to establish

which is a better working theory of the software design process. Whichever of these theories is supported

will then be useful to both academics and practitioners in several ways. As uses of FBS are discussed

elsewhere (cf., Gero 1990; Gero and Kannengiesser 2004; Kruchten 2005), this section discusses only

potential uses of the SCI Framework.

Academics. The SCI Framework may be useful for research in at least three ways.

1. It may facilitate evaluating and improving design methods, tools and practices. For example, in

evaluating an SDM, we may ask “does this methodology provide guidance concerning all three

fundamental design activities – sensemaking, coevolution and implementation?” If not, can the

methodology be improved by considering those omitted?

2. The SCI Framework may be useful for evaluating and updating courses and curricula. For instance,

if the ACM model curriculum for software engineering4 lacked treatment of one of the fundamental

design activities (e.g., sensemaking) this would indicate a potential avenue for improvement.

Moreover, if the SCI Framework is supported over FBS (which subsumes the Systems

Development Lifecycle) it may be more useful to teach supported SCI Framework concepts rather

than unsupported SDLC concepts in design-oriented courses.

3. It may inform development of an antecedent theory of design project success. In a strict

interpretation of causality, causal theories imply precedence relationships. The SCI-Framework

dispenses with Waterfall-like, artificial activity sequences. Therefore, it may eliminate extraneous

97
4 see http://www.acm.org/education/curricula-recommendations

http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations

www.manaraa.com

causal relationships during theory building (e.g., the hypothesis that analysis quality causes design

quality is a priori incorrect as analysis and design are cotemporal in practice).

Managers. The SCI Framework posits that problem-understanding and -solving are cotemporal in

practice, that code is written iteratively and that the primary iterative artifact used by developers is source

code (rather than models). This does not mean that attempting to separate analysis from design, write

code linearly or iterate on models is less effective. However, if the SCI Framework is accurate, it implies

several issues for software project managers.

1. Developers may resist attempts to pressure them into separating analysis from design, writing code

linearly or iterating on models. Developers may fake adherence to design methodologies that are

inconsistent with their natural way of working (Parnas and Clements 1986).

2. It is unlikely that implementing a tool, practice or method that is inconsistent with iterative coding

and simultaneous analysis and design will be effective without a corresponding change in

development practice.

3. If developers do not understand the problems they are solving until the solution is well into

development, it means that any upfront budget and schedule estimates are made without any

substantive understanding of the problem. It seems incredulous that anyone could accurately

estimate the cost of solving a problem without knowing what the problem is.

4. Since many computer science, computer engineering and information systems programs teach

development according to RCP, new graduates may be deeply confused about the nature of

development practice.

3.6.3 The Way Forward

Many academics and practitioners have written prescriptive accounts of how software should be designed

(Wynekoop and Russo 1997), yet how software is designed remains largely unknown (Freeman and Hart

2004; Simon 1996; Sullivan 2003; Wynekoop and Russo 1995). This research flows from the

commonsense premise that it may be useful to describe what design teams actually do before trying to

98

www.manaraa.com

prescribe what they should do. The ubiquity of design behooves social scientists to study it empirically.

Once a dominant perspective and process theory are established (one perspective and process theory is

found to better represent design practice than the other), several research streams become available,

including evaluating popular SDMs, evaluating software design curricula and developing a theory of

design project success (see ch. 5). These are all essential steps in software design science.

99

www.manaraa.com

CHAPTER 4: A COMPARATIVE, EMPIRICAL

EVALUATION OF TWO SOFTWARE DESIGN

PROCESS THEORIES1

100

1 A previous version of this paper was accepted for the International Conference on Design Science Research in
Information Systems and Technology (DESRIST 2010), St. Gallen, Switzerland, and published in R. Winter, J. L.
Zhao and S. Aier (Eds.): Global Perspectives on Design Science Research, LNCS 6105, Springer, pp. 61-76.

www.manaraa.com

4.1 INTRODUCTION

A key element of design science, in the “researching design” sense used in this thesis, involves theories of

the shape and organization of the design process (Simon 1996). Yet the shape and organization of the

design process of software, in particular, is not well understood (Freeman and Hart 2004; Simon 1996;

Sullivan 2003; Wynekoop and Russo 1995), as most academic work on software design is prescriptive,

rather than explanatory or descriptive (see Wynekoop and Russo 1997; ch. 3). The purpose of this chapter

is to study empirically the shape and organization of the software design process – hence, my primary

research question.

Research Question: What is the nature of the process by which development teams create software in

practice?

Following Chapter Two, software design (verb) is the act of creating a specification of a software object,

by an agent, intended to accomplish goals in a particular environment, using a set of primitive

components, satisfying a set of requirements, subject to set of constraints. The software design literature

is characterized by two contradictory perspectives on the nature of software design: one perspective holds

that design is cognitive, the other holds that design is emergent (ch. 3). If design is an essentially

cognitive phenomenon, then design activities occur within a designer’s mind (or cognitive system). If

design is an essentially emergent phenomenon, then design activities are dominated by interactions with

elements outside the designer’s cognitive system, such as stakeholders.

Each of these perspectives underlies at least one design process theory. A process theory is an explanation

of how and why an entity changes and develops (see Appendix C), which is distinct from a process model

– “an abstract description of an actual or proposed process” (Curtis et al. 1992, p. 76). A process theory

seeks to explain how outcomes materialize in general, not simply one or several historical or possible

activity sequences. As the two perspectives are sufficiently abstract as to make direct evaluation difficult,

this chapter attempts to evaluate them vicariously through related process theories. The primary purpose

101

www.manaraa.com

of the chapter is to determine which of the perspectives better reflect the reality of software design - the

process theories act analogously to mediating variables, enabling this purpose.

This chapter is organized as follows. Section 4.2 organizes existing research on software design into two

mutually-exclusive clusters of interrelated theoretical and philosophical concepts (the Reason- and

Action-Centric Perspectives) and their operationalization through two software design process theories.

Section 4.3 describes the survey methodology used to comparatively test these process theories – the

results are described in Section 4.4. Section 4.5 concludes the chapter with a summary of its contributions

and limitations, and an outline of the next phase of the study.

4.2 TWO PERSPECTIVES ON SOFTWARE DESIGN

The design literature is characterized by a fundamental disagreement as to whether design is a cognitive

or emergent phenomenon (ch. 3). I refer to the view that design is cognitive and the view that design is

emergent as the Reason- and Action-Centric Perspectives, respectively. These are defined formally as

follows. The remainder of this section summarizes and analyzes their composition and implications.

Reason-Centric Perspective (RCP): 1) The belief that design is a cognitive phenomenon; 2)

the collection of paradigms, models, methodics and theories associated with this belief.

Action-Centric Perspective (ACP): 1) The belief that design is an emergent phenomenon; 2)

the collection of paradigms, models, methodics and theories associated with this belief.

4.2.1 The Reason-Centric Perspective

RCP, which holds a privileged position in design literature, is the belief that design is a cognitive

phenomena – it occurs primarily within the designer’s cognitive system (ch. 3). A cognitive system is a

set of interrelated components capable of learning and reasoning. In cognitive science, significant debate

exists concerning the scope of a person’s cognitive system – sometimes referred to as the “extended

102

www.manaraa.com

mind” issue (see Clark and Chalmers 1998). While this debate is beyond the scope of this chapter, here I

assume that designers may integrate simple elements into their cognitive systems, such as pencil and

paper, but cannot integrate complex artifacts such as a calculator, or debugger. To illustrate, doing mental

division is clearly a cognitive process and doing long division using pencil and paper is still, arguably, a

cognitive process, because of the high cohesion of the mind plus pencil and paper system; however,

inputting a division problem into Wolfram Alpha2 does not make it part of one’s cognitive system because

of the low cohesion between Wolfram Alpha and the designer’s mind. While the exact boundary of the

extended mind remains a gray area, what is important for this chapter is that things like models, sketches

and note cards can be part of the designer’s cognitive system, but tens of thousands of lines of software

code, test suites and APIs cannot because they are too complex to allow high cohesion.

This belief that design is cognitive is at the heart of Technical Rationality, the view that “professional

activity consists in instrumental problem-solving made rigorous by the application of scientific theory and

technique” (Schön 1983, p. 21). Technical Rationality requires given problems – goals are agreed in

advance and constraints are knowable. Schön argues that Technical Rationality (and therefore RCP) is

foundational to both positivism (Hacking 1982) and the Technical Problem-Solving design paradigm

(Simon 1996). The latter posits that professionals design by optimizing or “satisficing” a design candidate

vis-à-vis known constraints and objectives. RCP is also consistent with the cognitivist view of human

action, where actions are executed and understood through a plan and defined as “a sequence of actions

designed to accomplish some preconceived end” (Suchman 1987). Plans are prerequisites to action.

Unanticipated conditions trigger replanning; evaluation is performed by comparing resultant and planned

actions and outcomes. In this view, design is a form of plan-driven problem-solving, where an agent seeks

a goal state by executing a plan in a field of constraints (Newell and Simon 1972). Moreover, this view is

guided by an Information Processing metaphor – “the designer is seen as a machine capable of rationally

selecting and connecting together elemental information to satisfy a set of constraints” (2000, p. 309).

103
2 http://www.wolframalpha.com/

http://wolphramalpha.com
http://wolphramalpha.com

www.manaraa.com

Software development methods including the Waterfall Model (Royce 1970) and Rational Unified

Process (Kruchten 2003) embody these assumptions.

RCP can be operationalized using a compatible software design process theory. One process theory that

can be compatible, depending on how it is interpreted for software, is the Function-Behavior-Structure

Framework (FBS) (ch. 3). FBS (Gero 1990; Gero and Kannengiesser 2004) (Figure 4-1) claims that “the

purpose of designing is to transform function, F (where F is a set), into a design description, D, in such a

way that the artefact being described is capable of producing those functions” (Gero 1990, p. 2, original

italics). Gero posited three “intermediate artifacts” – structure (S), structure’s behavior, (Bs) and expected

behaviors (Be).

Fig. 4-1. The Function-Behavior-Structure Framework (adapted from Kruchten 2005)

Numerous papers have analyzed, applied and proposed revisions to the original FBS Framework. For

instance, Gero and Kannengiesser (2004) situated function, behavior and structure in three different

“worlds” – desired, internal and external – where each concept exists in each world; e.g., desired

functions, the designer’s interpretation of the functions of the current design candidate, and external

representations of said interpretations. Vermaas and Dorst (2007) critiqued the model’s “double aim of

describing actual designing and prescribing improved designing” (p. 133) and argued for a new definition

of function. Galle (2009) offered two re-interpretations of FBS to address ontological issues surrounding

F S D

Be Bs

DocumentationCatalog Lookup

Evaluation

Structural Reformulation

Behavioral
Reformulation

Functional
Reformulation

Synthesis

Transformation

Occasional
Transformation

Comparison

104

www.manaraa.com

its core artifacts. In Galle’s nominalist interpretation, functions, behaviors and structures are defined as

descriptions; hence, FBS describes a process of symbol manipulation in which the designer generates a

structure-description from function- and behavior-descriptions – creating and deploying the design object

are outside of this process. For reasons previously described (see ch. 3), the Reason Centric Perspective

can be operationalized using Galle’s nominalist interpretation of FBS (see Tables 4-1 and 4-2 for

definitions of FBS artifacts and operations). In the remainder of this chapter, “FBS Framework” refers to

a nominalist interpretation of FBS unless otherwise stated.

Table 4-1. Artifacts of the FBS Framework (adapted from Galle 2009; Gero 1990)

Symbol Meaning

Be a desrciption of the desired behavior of the structure

Bs a desrciption of the predicted behavior of the structure

D a graphically, numerically and/or textually represented model that transfers information about the
design object sufficient to manufacture, fabricate or construct it

F a desrciption of the purposes of the design object

S a desrciption of the design object’s elements and their relationships

Table 4-2. Operations of the FBS Framework (adapted from Galle 2009; Gero 1990)

Operation Inputs Outputs Meaning

Analysis S Bs the process of predicting the behavior of a structure

Catalog Lookup F S selecting a known structure that performs the required function
Evaluation Bs & Be Differences

Between Bs and Be
comparing predicted behavior to desired behavior and determining whether
the structure is capable of producing the functions

Formulation F Be deriving desired behaviors from the set of functions

Production of
Design
Documentation

S D transforming the structure description into a design description suitable for
manufacturing

Synthesis Be S & Bs generating a structure description from the desired behaviors based on
knowledge of the behaviors produced by that structure

Structural
Reformulation

S, Bs S modifying the structure description based on itself and its predicted
behaviors

Behavioral
Reformulation

S, Bs &
Be

Be modifying the expected behaviors based on the structure description and its
predicted behaviors

Functional
Reformulation

S, Bs & F F modifying the set of functions based on the structure description and its
predicted behaviors

105

www.manaraa.com

4.2.2 The Action-Centric Perspective

ACP holds that design is an emergent phenomenon comprising continuous interactions between designers

and their environment (see ch. 3). “Emergence … refers to the arising of novel and coherent structures,

patterns and properties during the process of self-organization in complex systems” (Goldstein 1999).

This is consistent with social constructivism, which posits that knowledge derives from social interactions

(Berger and Luckmann 1966). ACP also underlies the Reflection-in-Action design paradigm, devised by

Schön (1983), who built on social constructivism and empirical studies of professional practice.

Reflection-in-Action models design as a reflective conversation between the designer and the situation.

The designer alternates between framing (conceptualizing the problem), making moves (where a move is

real or simulated action intended to improve the situation) and evaluating moves. Multiple agents may

reflect collectively in action using boundary objects (Levina 2005). These concepts are broadly consistent

with the ethnomethodological view of human action (ethno-view), where “the organization of situated

action is an emergent property of moment-by-moment interactions between actors, and between actors

and the environments of their action” (Suchman 1987, p. 179), while “plans are representations, or

abstractions over action” (p. 186). Indeed, Schön (1983) argued that “when someone reflects in action …

he does not keep means and ends separate … he does not separate thinking from doing” (p. 69). This

further implies that innovation is based on the creativity and experience of the designer; consequently, the

guiding metaphor of ACP is creativity (Love 2000). Software development methods including Scrum

(Schwaber and Beedle 2001) and Extreme Programming (Beck 2005) embody these assumptions. ACP is

also broadly consistent with the Agile philosophy (Beck et al. 2001) and amethodical development (Truex

et al. 2000).

ACP is also compatible with a software design process theory, the Sensemaking-Coevolution-

Implementation (SCI) Framework (ch. 3). The SCI Framework (Figure 4-2) claims that software design

includes three primary activities (in no set order) – making sense of context; iteratively evolving mental

pictures of context and software artifact; writing code based on the mental picture of the software. While

106

www.manaraa.com

FBS was originally proposed as a model of engineering design, the SCI Framework (whose concepts and

relationships are defined in Table 4-3) is specifically intended to describe software design.

Mental
Picture of
Context

Sensemaking

Goals

Design
Agent's

Environment

Design Agent

Mental Picture
of Design

Object

Implementation

Design Object

Primitives

Coevolution

Design
Object's

Environment

Constraints

Input
Output
Composition
Executes
Unbounded Entity

Object

Mental Entity

Activity

Key

Requirements

Fig. 4-2. The Sensemaking-Coevolution-Implementation Framework

Table 4-3. Concepts of the SCI Framework

Concept Meaning Sources

Constraints a restriction on a structural or behavioral property of the design object (Simon 1996; Sommerville
1996; Suh 1990), ch. 2

Design Agent an entity or group of entities that is capable of forming intentions and goals
and taking actions to achieve those goals, and that specifies the structural
properties of the design object

(Alexander 1964; Eekels
2000), ch. 2

Design Object’s
Environment

the totality of the surroundings where the design object exists or is intended
to exist

(Alexander 1964), ch. 2

Design Agent’s
Environment

the totality of the surroundings of the design agent (Checkland and Holwell 1998;
Schön 1983) ch. 2

Design Object the software artifact under construction, exclusive of non-software artifacts
such as models and end-user documentation

(Alexander 1964; Eekels
2000), ch. 2

Goals optative statements (which may exist at varying levels of abstraction) about
the effects the design object should have on the design object’s
environment

(Churchman 1971; Dardenne
and Lamsweerde 1993; Suh
1990), ch. 2

Mental Picture of
Context

the collection of all beliefs, held by the design agent, regarding the design
agent’s environment and the design object’s environments

(Alexander 1964; Maher et al.
1995; Purao et al. 2002)

Mental Picture of
Design Object

the collection of all beliefs held and decisions made by the design agent
concerning the design object

(Alexander 1964; Maher et al.
1995; Purao et al. 2002)

Primitives the set of entities from which the design object may be composed (Meyer 1988), ch. 2
Requirements a structural or behavioral property that a design object must possess (Bourque and Dupuis 2004;

Royce 1970; Suh 1990), ch. 2

107

www.manaraa.com

4.2.3 Comparative Analysis of Perspectives and Process Theories

Perspectives in Conflict. Table 4-4 contrasts RCP and ACP. The conflict between these perspectives is

evident in Beck’s discussion of common tensions between managers who try to drive projects through

cost estimates and developers who cannot reliably estimate complex projects (Beck 2005). Similarly,

Graham explains misalignment between programming education and practice – “I was taught in college

that one ought to figure out a program completely on paper before even going near a computer. I found

that I did not program this way ... I tended to just spew out code that was hopelessly broken, and

gradually beat it into shape” (Graham 2003). Moreover, “the concept of method ... occupies an extremely

privileged status in formal information systems development thought” while “the possibility that

amethodical development might be the normal way” of building systems has “almost entirely elud[ed] the

systems development literature” (Truex et al. 2000, p. 54, 58). RCP has occupied an analogously

privileged status in design research despite little empirical evidence concerning its assumptions and

ramifications.

Table 4-4. Comparison of Reason- and Action-Centric Perspectives

Dimension Reason-Centric Perspective Action-Centric Perspective

Epistemology Positivist Constructivist

Theory of Action Cognitivist Ethnomethodological
Design Paradigm Technical Problem-Solving Reflection-in-Action
Guiding Metaphor Information Processing Creativity
Process Theory FBS Framework (nominalist interpretation) SCI Framework

Process Theory Similarities. The FBS and SCI Frameworks are similar in at least the following ways.

1. They are both teleological process theories (explanations of how and why an entity changes wherein

change is manifested by a goal-seeking agent that engages in activities in a self-determined

sequence, and monitors progress (Churchman 1971; Singer 1959; Van de Ven and Poole 1995)).

Therefore, they share fundamental aspects of teleological process theories, including goals and an

agent. In Gregor’s (2006) typology, they are both theories for describing and explaining (ch. 3).

108

www.manaraa.com

2. They share fundamental design concepts; e.g., FBS’s expected behavior and structure concepts are

similar to the SCI Framework’s requirements and mental picture of the design object concepts (see

Tables 4-1 and 4-3).

3. Both frameworks are consistent with models. In FBS, the designer necessarily creates an external

representation of the design artifact’s structure and may also model functions and behaviors. In the

SCI Framework, the design agent may model mental pictures of the context (conceptual models) or

the design object (design models) or use models to externalize or share cognition (Levina 2005).

These similarities have no apparent bearing on the Reason and Action-Centric Perspectives. First, either

perspective could underly numerous process and causal theories. Second, the concepts shared by the two

frameworks are specific to the domain (design), but have nothing to do with whether design is emergent

or cognitive. Third, models can be used in both emergent processes (e.g., as boundary objects to facilitate

information sharing) and cognitive processes (e.g., to extend one’s cognitive capacity through external

storage). However, Model-Driven Engineering (Schmidt 2006), which prescribes generating

progressively more detailed models until the final model becomes executable code, is consistent with

neither the FBS nor SCI Framework.

Process Theory Differences. Notwithstanding these similarities, the two theories differ in at least the

following three ways.

1. Whether problem setting and problem solving are separate (FBS Framework) or cotemporal and

inextricably linked (SCI Framework).

2. Whether the coding process is driven by prefigured decisions (FBS Framework) or evolves

iteratively with the design process (SCI Framework).

3. Whether designers focus on models (FBS Framework) or code (SCI Framework).

Each of these differences is directly related to the Reason and Action-Centric Perspectives. First, since a

problem is a relationship between an actor and a context, problem setting requires interaction with (or at

least observation of) the actor and context. Therefore, if design involves both problem setting and solving,

109

www.manaraa.com

design must be emergent, but if problem setting and solving are separate, design may be a separate,

entirely cognitive, activity. Second, if design is an entirely cognitive activity then coding is not part of

design, because the software code is not part of the designer’ cognitive system. Third, if design is

essentially cognitive, and the complexity of realistic design problems strain the designer’s limited short

term memory, one might expect the designer to externalize part of his or her cognition using textual or

diagrammatic descriptions of the problem or design object – models. In contrast, if design is emergent,

the designer may externalize his or her ideas by building the software. Focusing on the software code,

which is outside the designer’s cognitive system, is consistent with designing as an emergent

phenomenon, while focusing on models or similar cognitive aids is consistent with a designer working

primarily within his or her cognitive system. These differences are summarized in Table 4-5.

Table 4-5. Key Differences Between SCI and FBS Frameworks

Dimension Reason-Centric
Perspective

Action-Centric
Perspective

FBS Framework SCI Framework

relationship
between
problem
setting and
problem
solving

separate – since
problem setting is
emergent, problem
solving must be
separated to be
cognitive

cotemporal and inextricable
– both problem and solution
emerge from designer’s
interactions with context

Separate – represented by F, which is
given (“Functional reformulation,”
involves modifying F based ONLY
on changes to structure, not based on
changes to the sociopolitical context
of the designer or problem)

cotemporal and
inextricable –
Coevolution modifies
both mental pictures of
context and design
artifact

primary
iterative
artifact

models – used to
enhance designer’s
cognitive system

code – designers focus on
the real-world instantiation
of the design, i.e., software
code

models - referred to as S, Be and Bs
(descriptions of structure and
behavior). No artifact in FBS
corresponds to code

code - the primary
iterative cycle is
between the context,
mental pictures, and
code, only the last of
which is an artifact

coding
progression

linear – since the
code is not part of
the designer’s
cognitive system,
where design occurs,
little iteration is
necessary in coding

iterative – the design,
expressed through the code,
emerges from continual
interaction with the context.
The emerging design
changes the context,
necessitating code iterations

Linear - all design decisions are
encompassed by the design
description, making coding
straightforward; hence, little iteration
is needed.

Continual changes to
the context (some
caused by the design
activity itself)
necessitate iterative
revisions to the Mental
Pictures and code.

Testability. The Reason and Action-Centric Perspectives are very general, ontological propositions,

concerning the nature of a phenomenon. They are not causal hypotheses amenable to experimental

testing. They are not directly observable or measurable in a quantitative sense. Yet, they each may be

more or less accurate in their description of an observable phenomenon. They are also mutually

110

www.manaraa.com

exclusive: either design occurs primarily within the designer’s cognitive system or involves substantial

external interactions; no third option is apparent. Furthermore, although they cannot be measured directly,

indirect evaluation may be possible through their associated software design process theory.

As described above, FBS is closely related to RCP. It depicts a closed system to which the only input, the

set of functions, is provided upfront. The designer than iterates between the set of functions, a structure-

description, and two sets of behaviors. All of these are part of the designer’s cognitive system. Similarly,

ACP is closely related to the SCI Framework. It depicts an open system where the designer continually

interacts with the project context and an iterative artifact outside the designer’s cognitive system, namely,

the design object itself. Therefore, empirically comparing the FBS and SCI Frameworks can produce

insight into the corresponding perspectives.

Simply showing the FBS (or SCI) Framework is more accurate does not intrinsically support the Reason

(Action)-Centric Perspective. It is also necessary to show that the reasons for concluding that one

framework is superior are related to the underlying perspective. However, as discussed in the previous

section, the three key differences between the process theories directly reflect the tension between the two

perspectives. Therefore, comparatively testing the process theories may provide insight into the

perspectives.

This paper began with the research question: What is the nature of the process by which development

teams create software in practice? This question can now be reformulated as Which of the Reason- and

Action-Centric Perspectives more accurately represents how software is created in practice? The

following section describes the research method applied to this question below.

4.3 RESEARCH DESIGN

My literature review did not uncover any previous empirical evaluations of either theory in the software

domain. Moreover, I uncovered much less methodological advice on evaluating process theories than is

111

www.manaraa.com

commonly available for variance theories. However, Wolfe (1994) identified two common approaches to

studying innovation processes – cross-sectional surveys and in-depth field studies. More generally, Poole

et al. (2000) considers three research designs appropriate to studying change processes – cross-sectional

survey, panel (longitudinal) survey and process (field) studies. Combining two or more of these

approaches enables multi-method triangulation. More generally, numerous authors recommend taking a

comparative approach to testability to avoid cherry-picking evidence (Sober 1999; Yin 2003).

Based on this, I propose a two-phase comparative evaluation of the SCI and FBS Frameworks. By

focusing on the three key differences described above, each of which maps to a difference between the

Action- and Reason-Centric Perspectives, evidence supporting one of the process theories should

vicariously support its associated perspective. A cross-sectional survey (phase one) allows for larger

sample size and reliability while a multiple case study (phase two) facilitates gathering deep insights into

developer behaviors and cognitive processes. This paper focuses on the survey, which I designed along

commonly-used guidelines (DeVellis 2003; Fowler 1995; Straub 1989). Possibilities for the case study

phase are described in §4.5.5.

4.3.1 Hypothesis

Despite the conventional wisdom favoring Reason-Centric assumptions, I hypothesize that the SCI

Framework is more accurate, as its underlying design paradigm (Reflection-in-Action) and theory of

human action (Ethno-View) are better supported by empirical studies than their Reason-Centric

alternatives (Schön 1983; Suchman 1987). This leads to the following hypothesis and alternative

hypothesis.

Hypothesis H1: The SCI Framework more accurately reflects how software is created in

practice than the FBS Framework.

Hypothesis Ha: The FBS Framework more accurately reflects how software is created in

practice than the SCI Framework.
112

www.manaraa.com

For simplicity of exposition, I state the hypothesis at the theory level (rather than the construct level, as is

common for variance theories).

4.3.2 Instrument Development and Validation

The steps in the instrument development and validation were as follows.

1. The author identified differences between the two theories.

2. A colleague with expert knowledge of software design reviewed these differences (see below).

3. The author generated approximately 80 items concerning these differences.

4. Items were reviewed by two faculty members at the author’s university – one with extensive

experience in questionnaire-based research, the other with extensive knowledge of design.

5. Items were revised and a draft questionnaire was created.

6. A pilot was conducted with three professional developers and seven PhD students in the author’s

university to get research-oriented feedback.

7. Items were revised to enhance construct validity.

8. A second pilot with 12 professional developers was conducted. Results indicated that the

questionnaire was too long and too difficult to understand.

9. The questionnaire was shortened and items were simplified.

10. A third pilot with 10 professional developers was conducted. Feedback indicated that the

questionnaire was of acceptable length and readily understood.

11. Minor revisions resulted in the final version of the instrument.

In step two, the software design expert was asked to examine three things: 1) whether any of the proposed

differences were unwarranted; 2) whether any salient differences between the two theories were missed;

3) whether any bias in the interpretation of either theory was evident. No unwarranted differences,

omissions or biases were reported. Similarly, in steps four and six, reviewers were asked for feedback on

the validity of the survey. In this way, the instrument development process was used to promote high

content validity.

113

www.manaraa.com

Following this process, the questionnaire comprised 13 items, each with six responses – one strongly

supporting each framework, one supporting each framework, one neutral, and one “Not Applicable /

Don’t know.” The question order was randomized; the answer order varied by question. Table 4-6 lists

each item and describes its relationship to the process theories and perspectives.

4.3.3 Side Note on Measurement Issues

Please note, as process theory testing is less common than causal theory testing, many readers may be

unfamiliar with the interpretation of items in this study. Here I address this issue with a brief exposition.

Using either process theory, one may draw a variety of predictions about design practice. In some cases,

both theories lead to the same predicted observation; e.g., design is done by an agent capable of choosing

actions to achieve goals. In other cases, differences between the theories lead to contrasting predicted

observations; e.g., Difference 1 (whether problem setting and solving are separate), would lead one to

predict that the process of designing the software would (SCI) or would not (FBS) improve the team’s

understanding of the software’s intended context. Each contrasting prediction may then be encapsulated

in a bipolar item where one pole represents the observation consistent with the SCI Framework and the

other that of FBS. Consequently, each item concerns a behavioral dimension where the two theories

predict contrasting observations.

Based on this understanding of the items, one should expect neither high inter-item agreement nor higher

levels of agreement for items associated with the same difference. These items are not separate reflective

indicators of the same latent construct; rather, each item concerns a behavioral dimension on which the

two theories predict contrasting observations. Since construct validity (in the broadest sense of asking

whether the items measure what is intended) could not be evaluated post hoc using statistical measures of

inter-item agreement, special care was taken in generating and validating the questionnaire, as described

in the previous section.

114

www.manaraa.com

Table 4-6. Questionnaire Items

Item Dimension Relationship to Perspectives Relationship to Theories
No one thing drives all design
decisions – they are made based on
a variety of information

relationship
between
problem
setting and
problem
solving

In RCP, problems are given, design decisions are
based on problems. In ACP, problems are
constructed based on a multifarious context, so
design decisions are based on many properties of
the context.

In FBS, all design decisions are driven by
functions. In SCI, design decisions are
influenced by any number of aspects of
the context.

Changes to my team's
understanding of what the software
is supposed to do were triggered by
changes in our understanding of the
problem/situation

relationship
between
problem
setting and
problem
solving

In RCP, problems and goals are given and do not
change. In ACP, problem understanding is part of
design, so goals are constructed and revised based
on a fluctuating understanding of the problem.

In FBS, understanding of the problem (F)
is given and does not change over time. In
SCI, understanding of the problem and
solution coevolve.

My understanding of what the
software is supposed to do has been
influenced by several factors (e.g.,
management, marketing, clients, the
dev team, standards, my own
values, experience on previous
products, etc.)

relationship
between
problem
setting and
problem
solving

In RCP, the problem is given and requirements are
generated solely from the given problem. In ACP,
problems are constructed based on multifarious
context, so design decisions are based on many
properties of the context.

In FBS, expected behavior is determined
solely by the known functions. In SCI,
requirements are part of the mental
picture of the context, and are affected by
many contextual variables.

My understanding of the software’s
purpose has been influenced by
several factors (e.g., management,
marketing, clients, the dev team,
standards, my own values,
experience on previous products)

relationship
between
problem
setting and
problem
solving

In RCP, someone or something provides the
purpose, so the designer’s understanding is based
on this. In ACP, the purpose is constructed based on
many properties of the context.

IN FBS, F is given. In SCI, goals are part
of the mental picture of the context, and
are affected by many contextual variables.

The process of designing the
software has NOT helped my team
better understand the context in
which the software is intended to be
used

relationship
between
problem
setting and
problem
solving

In RCP, design is a rational search within a known
solution space – it does not include any rethinking of
the context of use. In ACP, understanding the
problem and designing the solution occur together
and contiunally interact

In FBS, changes to S can lead to changes
in F, but this “functional reformulation” is
unrelated to understanding of context - it
reflects new things the artifact could do, or
physical impossibilities. In SCI, the two
mental pictures coevolve.

I do detailed design: “Exclusively
with models” … “Exclusively with
code”

primary
iterative
artifact

In RCP, detailed design occurs within the designer’s
cognitive system, including his mind, and external
representations of cognitive artifacts, i.e., design
models. In ACP, detailed design emerges from the
continual interaction between designers and the
design object; hence, design occurs primarily in the
since the context of coding. This is the essence of
design as a cognitive phenomenon vs. design as an
emergent phenomenon.

In FBS, detailed design is completed
within the S-Bs-Be loop and during the
documentation process, before coding. S
and D are models. In SCI, detailed design
is part of the implementation and
coevolution processes, and manifests
primarily in the code itself.

My team does detailed design:
“Exclusively with models” …
“Exclusively with code”

primary
iterative
artifact

In RCP, detailed design occurs within the designer’s
cognitive system, including his mind, and external
representations of cognitive artifacts, i.e., design
models. In ACP, detailed design emerges from the
continual interaction between designers and the
design object; hence, design occurs primarily in the
since the context of coding. This is the essence of
design as a cognitive phenomenon vs. design as an
emergent phenomenon.

In FBS, detailed design is completed
within the S-Bs-Be loop and during the
documentation process, before coding. S
and D are models. In SCI, detailed design
is part of the implementation and
coevolution processes, and manifests
primarily in the code itself.

Which of these is more consistent with
how your team does testing?
“Exclusively prediction” …
“Exclusively observation”

primary
iterative
artifact

In RCP, testing is a cognitive activity; hence, it
involves predicting what the design object will do
once created based on the current design
specification. In ACP, testing is an emergent activity
in which the behavior of the design object is
observed in some context.

In FBS, evaluation is the comparison of
Bs (predicted behavior) to Be (desired
behavior). In SCI, evaluation consists of
examining the changes in context
produced by the artifact (sensemaking).

A complete, correct specification of
low-level design decisions was
available before coding began

coding

Without a sufficiently complete specification, linear
coding is practically impossible, as working out new
details may necessitate unforseeable changes. With
a complete specification, iterations are unnecesary
and inefficient. Hence, RCP requires an advance
spec, ACP does not. Furthermore, in ACP, building
the code changes the understanding of the problem,
necessitating changes to the design.

In FBS, documentation produces the
required specification and coding follows.
The construction (coding) step is not
shown, and there is no loop back to
change structure. In SCI, implementation
changes the context, triggering changes
to the design; hence the spec cannot be
complete until the design object is (nearly)
complete.

Low-level design decisions were
primarily made before the first line of
code was written

coding

Without a sufficiently complete specification, linear
coding is practically impossible, as working out new
details may necessitate unforseeable changes. With
a complete specification, iterations are unnecesary
and inefficient. Hence, RCP requires an advance
spec, ACP does not. Furthermore, in ACP, building
the code changes the understanding of the problem,
necessitating changes to the design.

In FBS, documentation produces the
required specification and coding follows.
The construction (coding) step is not
shown, and there is no loop back to
change structure. In SCI, implementation
changes the context, triggering changes
to the design; hence the spec cannot be
complete until the design object is (nearly)
complete.

The software was coded iteratively

coding

In RCP, coding is the straightforward translation of
an available, detailed specification (plan) into
software code. In ACP, coding changes the
understanding of the problem, necessitating code
iterations. (See left.)

In FBS, the construction (coding) step is
not shown, and there is no loop back to
change structure. In SCI, coding coding
changes the understanding of the
problem, necessitating code iterations
(see above).

My team has revised the software
code based on new information

coding

In RCP, the problem is given. There is no “new
information.” Any substantial change to the problem
would require replanning and redesign prior to code
changes. In SCI, continual changes to the
understanding of the context drive code iteration.

FBS depicts a closed system – there is no
mechanism by which new information can
enter after F is given. In SCI, new
information is absorbed via sensemaking
and may lead to code changes.

My team now understands what the
software is supposed to do better
than we did when we started coding

coding

In RCP, problem understanding precedes problem
solving, which precedes coding. In ACP, problem
understanding and solving are cotemporal.

In FBS, there is no reformulation of F
(representing the problem) based on
code. In SCI, the designer switches
between implementation, sensemaking
and coevolution, improving understanding
with every evaluation cycle.

Furthermore, please note that although respondents were asked descriptive questions concerning their

work, this is a confirmatory study. Using descriptive questions to gather evidence for confirmatory

research is inherent to survey research methodologies. What separates descriptive or exploratory research

115

www.manaraa.com

from confirmatory research is whether the hypotheses come before or after the data collection (Jaeger and

Halliday 1998). In this case, the hypotheses came first; therefore this is a confirmatory study.

4.3.4 Sampling Strategy and Administration

The population of interest includes all members of all software development teams, worldwide. However,

for practical reasons, I limited the sample to English speakers. As no comprehensive population list was

identified, random sampling was impractical. This left three potential recruiting strategies.

1. Randomly select software development firms from a specific geographical area where a population

list is available (several companies, including Manta, maintain such lists).

2. Viral sampling through twitter, the blogosphere and online social networking applications including

Facebook and LinkedIn.

3. Snowball sampling using the author’s professional network.

The first strategy would be best able to support claims of representativeness but its generalizability would

by limited since, for practical reasons, the sample would be limited by geography and culture. The second

strategy has the potential to generate a large, diverse response, but the response rate would be incalculable

as the sample size is undefined. The third strategy is dominated by the other two – it would be

geographically and culturally limited and have an undefined response rate. Therefore, I attempted both

random and viral sampling.

As the questionnaire was administered online, link tokens tagged the origin (but not the identity) of each

respondent. Browser cookies attenuated duplicate responses.

4.3.5 Interpreting the Results

Before presenting the results, I enumerate the possible patterns and their interpretations, assuming

responses are coded from 1 (strong support for FBS) to 5 (strong support for the SCI Framework).

116

www.manaraa.com

1. A symmetric distribution (median 3) would indicate that neither framework is substantially more

accurate than the other.

2. A positively-skewed distribution (median 1 or 2) favors FBS.

3. A negatively-skewed distribution (median 4 or 5) favors the SCI Framework.

4. A bimodal distribution (e.g., modes of 2 and 4) would indicate two groups of developers exist – one

supporting each framework.

5. A variety of symmetric, positively and negatively skewed items would suggest a problem with the

survey instrument.

4.4 RESULTS

4.4.1 Sample and Demographics

Between December 2, 2009 and January 11, 2010, 1384 participants responded to the survey. Random

sampling of software development firms produced negligible responses as gatekeepers were unwilling to

facilitate contact with developers. Hence, most respondents came from the viral sampling strategy (§4.4.3

gives further sample analysis). Since the sample size is undefined, the response rate cannot be calculated.

However, of 4410 individual visitors to the survey page, 1384 completed it (31%), 1118 partially

completed it and 1908 bounced (Table 4-7 and Table 4-11 give demographic analysis).

Responses were received from 65 countries across six continents, reporting a variety of roles in their

projects, from managers and graphics designers to developers and testers. Respondents also reported

using a wide variety of agile (e.g., Scrum) and plan-driven (e.g., Waterfall) methodologies. When asked

“is your project more ‘social’ (like a website) or ‘technical’ (like a device driver)”, participants answered:

more social - 34%; more technical - 29%; in between - 36% (further analysis in §4.4.3).

117

www.manaraa.com

Table 4-7. Summary of Sample Demographics

Dimension Mode Minimum Maximum

Years of
Experience

1 to 5 years (31.5%) < 1 year (2.9%) > 25 years (3.6%)

Education Bachelor’s Degree (48%) Some School (1.7%) PhD (4.1%)
Company Size 1 to 10 (29%) 1 to 10 (29%) >10 000 (10.5%)
Team Size 11 members 83 members 3000 members
Project Length 1.9 years 2.4 years 20 years

4.4.2 Testing Hypothesis H1

Many methodologists and statisticians disagree on whether Likert scales produce interval or ordinal data,

and consequently on whether to apply parametric or nonparametric tests (Harwell and Gatti 2001). Here, I

take the more cautious route, treating this data as ordinal.

The results are given in Table 4-8 and diagramed in Figure 4-3. Visually inspecting Figure 4-3 reveals that

the overall distribution favors the SCI Framework. Table 4-8 shows the frequency of responses for each

of the 13 items, e.g., for item 9, 17 respondents selected the response strongly favoring the FBS

Framework while 620 selected the response strongly favoring the SCI Framework. It also shows that the

median response for each item was 4 or 5, indicating support or strong support, respectively, for the SCI

Framework. Similarly, 96.6% of respondents had a median response (across the 13 items) of 4 or 5. In

summary, the response distribution is negatively skewed, supporting Hypothesis H1 (SCI Framework

supported).

Nonparametric tests (such as chi-square), may be used to evaluate the statistical significance of this

distribution; however, these tests require an expected distribution to compare with the observed

distribution. Since no a priori, theoretically-justified distribution is available, the “expected distribution”

must be generated somehow. Three alternatives are apparent.

1. Uniform Distribution - on any given item, responses split evenly between all categories.

2. Pseudo-Normal Distribution - an approximated normal distribution on a five point scale.

118

www.manaraa.com

3. FBS-supporting distribution - a distribution that favors FBS to the same extent that the observed

distribution favors the SCI Framework.

Table 4-8. Questionnaire Results By Item

ItemItemItemItemItemItemItemItemItemItemItemItemItem IndividualIndividual

1 2 3 4 5 6 7 8 9 10 11 12 13 Median Mode

Strong FBS 7 13 14 20 62 22 22 13 17 58 23 13 9 0 2

FBS Framework 38 66 42 76 161 61 97 39 63 168 173 174 67 4 21

Neutral 72 162 109 120 195 78 113 55 122 148 320 299 303 43 32

SCI Framework 597 662 576 572 572 398 539 452 539 492 671 623 562 932 717

Strong SCI 656 446 628 575 349 819 592 796 620 505 173 155 425 406 613

Item Median 4 4 4 4 4 5 4 5 4 4 4 4 4

Item Mode 5 4 5 5 4 5 5 5 5 5 4 4 4

Note: columns do not total 1384 as each question had a “N/A” option.

Fig. 4-3. FBS/SCI Agreement Across 13 Items

The uniform and normal distributions are automatically generated from the data by the SPSS Statistics

software package when using the Kolmogorov-Smirnov (K-S) Test. I generated the FBS-supporting

distribution by reflecting the observed distribution (subtracting each response from 6). Using the normal

distribution addresses the question is the extent of negative skew in the observed distribution significant?

0

225

450

675

900

Strong FBS FBS Framework Neutral SCI Framework Strong SCI

N
um

be
r o

f R
es

po
ns

es

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7
Item 8 Item 9 Item 10 Item 11 Item 12 Item 13

119

www.manaraa.com

Using the FBS-supporting distribution addresses the question, is the observed distribution significantly

different from an equally compelling distribution supporting the alternative hypothesis?

Table 4-9 shows the results of comparing the observed distributions with each of the three expected

distribution alternatives. The results across all items and expected distributions are significant at the p <

0.001 level. However, generating a pseudo-normal distribution using the K-S test involves calculations

(e.g., mean) inconsistent with interpreting Likert-scales as ordinal data; therefore, these statistics should

be interpreted with caution. The most defensible test is the chi-square goodness of fit test using the

reflected (FBS-Supporting) distributions – with the significance via the sign test – as this compares

Hypothesis H1 (SCI-Framework more accurate) with the alternative hypothesis (FBS-Framework more

accurate) with a minimum of assumptions. Moreover, the practical significance of the observed

distribution should be evident from visual inspection of the above histogram (Figure 4-3).

Table 4-9. Chi-Square Test Results

Uniform DistributionUniform Distribution Pseudo-Normal
Distribution

Pseudo-Normal
Distribution

FBS-Supporting
Distribution

FBS-Supporting
Distribution

Item K-S Test Z Significance K-S Test Z Significance Sign Test Z Significance

1 24.59 p < 0.001 10.45 p < 0.001 -33.49 p < 0.001
2 21.00 p < 0.001 10.35 p < 0.001 -29.9 p < 0.001
3 23.21 p < 0.001 9.851 p < 0.001 -32.21 p < 0.001
4 21.90 p < 0.001 9.727 p < 0.001 -29.92 p < 0.001
5 15.92 p < 0.001 10.25 p < 0.001 -20.47 p < 0.001
6 23.51 p < 0.001 12.64 p < 0.001 -31.45 p < 0.001
7 21.32 p < 0.001 9.648 p < 0.001 -28.53 p < 0.001
8 24.72 p < 0.001 12.57 p < 0.001 -33.18 p < 0.001
9 22.12 p < 0.001 9.677 p < 0.001 -30.48 p < 0.001
10 17.70 p < 0.001 9.837 p < 0.001 -22.13 p < 0.001
11 13.65 p < 0.001 10.82 p < 0.001 -20.1 p < 0.001
12 12.94 p < 0.001 10.35 p < 0.001 -18.84 p < 0.001
13 17.50 p < 0.001 8.782 p < 0.001 -27.87 p < 0.001

Given the sample size and magnitude of skewness of the observed distribution, these results are fairly

robust against minor changes in the expected distribution. Again, although measures of effect size are not

available for non-parametric tests, given that 96.6% of individuals had a median response agreeing or

120

www.manaraa.com

strongly agreeing with the SCI Framework, it would be fair to say that the effect size is practically

significant.

In summary, Hypothesis H1 (the SCI Framework more accurately reflects how software is created in

practice than FBS) is supported and the effect is statistically significant. In the following section, I report

some descriptive statistics and exploratory findings that may prove useful for theory-building or inspiring

new inquiries.

4.4.3 Exploratory Analysis

In addition to the thirteen items, several demographic and project variables were included in the

questionnaire, both to characterize the sample and determine whether differences in agreement with the

FBS or SCI Framework were associated with any particular demographic or project dimension. Analyzing

this relationship requires a measure of an individual’s overall orientation toward the frameworks.

The Dependent Variable. For the following analyses, an individual’s process theory agreement score (or

simply “score”) is defined as follows.

Process Theory Agreement Score (score): a bipolar measure of the extent to which the

individual’s beliefs about his or her work practices conform to either the FBS or SCI

Frameworks, operationalized as the respondent’s median response across the 13 items.

The score indicates how well a respondent’s beliefs correspond to the assumptions of the FBS or SCI

Framework on a scale of 1 (FBS) to 5 (SCI).

Development Methods. Perhaps the most surprising finding to the author concerns the methods used by

respondents. Respondents were asked, in an open-response format, to list any development methods they

were currently using. Of the 684 respondents who answered this question, many indicated that they use or

draw from a variety of methods. Some listed things that are not methods, such as “python” (a language)

and “MVC” (the Model-View-Controller architectural design pattern). A few took the question as an
121

www.manaraa.com

opportunity to denounce “buzz words” or specific methods. Responses were coded by the author

according to a simple scheme – a responded was considered to have been influenced by any method

mentioned except methods mentioned explicitly in the negative (“We use Agile but not XP,” would be

coded Agile = True; Extreme Programming = False). This coding was sufficiently simple that it did not

warrant a second coder. The results are summarized in Table 4-10 – “Median Score” refers to the median

of the scores of all respondents indicating the influence of the corresponding method.

Table 4-10. Median Score by Methods Used

Method N Median Score

Scrum 323 4

Extreme Programming (XP) 130 4

Agile 115 4

Test Driven Development (TDD) 89 4

Service Oriented Architechture (SOA) 79 4

Other 62 4
Waterfall 47 4
Kanban 17 4
Lean 16 5
Rational Unified Process (RUP) 14 4
“Cowboy Coding” or “Seat-of-the-Pants” 11 4

Notes: 1) Methods mentioned by fewer than ten respondents are grouped under “other.” 2) Some of the “methods”

listed by respondents are not technically methods, e.g., TDD is a technique associated with XP; SOA is an

architectural design pattern.

These results are surprising in at least three ways.

1. Agile methods and concepts dominate the list. Scrum, XP, Test Driven Development and Lean are

all explicitly Agile philosophies. While Agile is often treated as a fringe movement by research,

managers and textbooks (e.g., Baltzan and Phillips 2008), these results suggest that Agile methods

are more popular than plan-driven methods such as Waterfall and RUP.

2. Methods used had no practical effect on scores. Since Waterfall and RUP are closely linked to FBS

(Kruchten 2005), one would expect developers using these methods to have lower median scores

122

www.manaraa.com

than developers using Agile methods. However, the median score was four for all methods expect

Kanban. This clearly undermines the possibility of a plan-driven subculture that is better described

by FBS.

3. The Waterfall Model explicitly mandates separating analysis from design and designing using

models rather than code. These are assumptions of FBS. The SCI Framework explicitly posits that

analysis and design are cotemporal and inextricably linked and that designers iterate primarily on

code rather than models. The Waterfall Model and SCI Framework are manifestly incommensurate;

one cannot use the Waterfall model and act in accordance with the SCI Framework at the same time.

Yet, the median score for respondents using the Waterfall model was four, indicating agreement

with the SCI Framework. One explanation for this is that the respondents claiming to use the

Waterfall model are not actually using it – a suggestion supported by several previous studies

(McCracken and Jackson 1982; Parnas and Clements 1986; Walz et al. 1993). Another possibility is

that respondents understand the term “Waterfall model” differently than academics.

These method use frequencies should be interpreted with caution for two reasons. First, the purpose of

this survey was to evaluate the two process theories, not to estimate method usage. The question format

(open response) and sampling strategy may have introduced bias into these estimates. Second, this

question does not allow inferences concerning the prevalence of homegrown methods or amethodical

development (Truex et al. 2000). Although 40 respondents explicitly indicated use of no method, or a

homegrown method, more than half of respondents left the question blank, which may indicate either

question-skipping or use of no method. Respondents may also have difficulty distinguishing between

homegrown methods and an amethodical design process. Again, the primary purpose of this analysis is to

evidence that the methods respondents report using have no practical effect on their Process Theory

Agreement Score.

Demographic Dimensions. As noted above, participants were asked about their gender, education, and

experience. None of these factors had a significant effect on individual median responses; put more

123

www.manaraa.com

precisely, for every category of each factor the median score was four (Table 4-11). Moreover, while the

sample includes a wide variety of countries, median score did not vary by country (Table 4-12).

Table 4-11. Median Score by Demographic Dimension

Dimension Categry N Median Score

Gender Male 1241 4

Female 56 4

Other 3 4

Education Some school 18 4

High school Diploma 53 4

Some college, university, trade school, etc. 198 4

Diploma from technical college, trade school, etc. 62 4

Bachelors degree 626 4

Masters degree 289 4

Doctorate degree 54 4

Experience less than 1 31 4

(years) 1 to 5 399 4

6 to 10 405 4

11 to 15 274 4

16 to 20 89 4

21 to 25 54 4

more than 25 48 4

Table 4-12. Median Score by Respondent Country

Country N Median Score Country N Median Score Country N Median Score

United States 549 4 Netherlands 33 4 New Zealand 16 4

Canada 176 4 India 23 4 South Africa 16 4

other 174 4 Italy 19 4 Romania 14 4

United Kingdom 118 4 Sweden 19 4 Brazil 13 4

Australia 73 4 Beligium 17 4 Spain 12 4

Germany 44 4 Poland 17 4 Israel 11 4

France 40 4

Note: Countries with fewer than ten responses are grouped as “other.”

124

www.manaraa.com

One danger in viral sampling is the possibility that the invitation to participate will circulate within only

one community, seriously curtailing the generalizability of the results. To avoid this, I attempted to inject

invitations into several communities, not unlike the strategy of starting a heuristic optimization algorithm

in several different parts of the solution space to avoiding sticking in the same local optimum. As shown

in Table 4-13, most responses came from one of two starting points: 1) Brett Cannon, Chair of the Python

Software Foundation promoted the survey via both his coding blog and Twitter account; 2) Jeff Atwood,

author of the blogs Coding Horror and Stack Overflow, promoted the survey via Twitter. While Mr.

Cannon primarily writes about issues specific to the language Python, Mr. Atwood covers a broad range

of programming-related topics. However, starting points had no effect on median Score. As sampling

origin was tracked using link tokens, the origin of respondents who manually typed the survey address or

otherwise removed the tokens is unknown.

Table 4-13. Median Score by Sampling Origin

Invitation Injection Point N Median Score

Brett Cannon’s Twitter and Python Blog 686 4

Jeff Atwood’s Twitter 515 4

other/unknown 102 4

Jurgen Appelo’s Twitter 69 4

Damien Guard’s Twitter 12 4

Note: Injection points resulting in fewer than ten responses and responses having no URL tokens are grouped as

“other/unknown.”

Project-Specific Dimensions. One may expect that larger projects would be heavier in planning and

modeling and therefore more consistent with FBS. However, when respondents were divided into two

groups (median < 4 and median >= 4), respondents with neutral or FBS-centric dispositions had lower

mean project and team sizes, but this difference was not significant (Table 4-14). Participants were also

asked whether their projects were more social or technical in nature. Neither this nor firm size had any

effect on scores (Table 4-15).

125

www.manaraa.com

Table 4-14. Independent Samples T-test for TeamSize and Project Length

Variable Median Score N Mean Std. Deviation Std. Error Mean t p

TeamSize
≥ 4.00 1290 11.10 84.85 2.36

0.382 0.703TeamSize
< 4.00 54 6.69 6.92 0.94

0.382 0.703

ProjectLength
≥ 4.00 638 1.94 2.38 0.09

0.540 0.589ProjectLength
< 4.00 18 1.63 1.71 0.40

0.540 0.589

Table 4-15. Median Score by Project-Specific Dimensions

Dimension Category N Median Score

Firm Size 1 - 10 393 4

(employees) 11 - 100 374 4

101 - 1000 219 4

1001 - 10 000 170 4

> 10 000 144 4

Nature of Project More Social 444 4

Somewhere in between 475 4

More Technical 372 4

NA 9 4

Similarly, while respondents indicated a variety of roles in the project and current occupations, no effect

on scores was discernible (Table 4-16).

Table 4-16. Median Score by Role in Project and Occupation

RoleRoleRole OccupationOccupationOccupation

Response N Median Score Response N Median Score

developer 1325 4 developer 1211 4
analyst 569 4 team lead 440 4
QA 533 4 manager 269 4
manager 266 4 analyst 197 4
graphics 195 4 QA 165 4

graphics 59 4

Note: Respondents could select multiple roles and occupations.

126

www.manaraa.com

Summary. In conclusion, the median individual Process Theory Agreement Score was four, indicating

that, on average, respondents report behaving in accordance with the SCI Framework. No demographic

nor project-specific variable had a practically significant effect on this result. Despite being heterogenous

on all demographic and project variables, the surveyed developers are practically homogenous concerning

the process theory where views and behavior coincide.

4.5 DISCUSSION AND CONCLUSION

4.5.1 Contributions

Three contributions of this research are evident. Specifically, it supports the Action Centric Perspective

and SCI Framework, and provides a proof-of-concept of a method for testing process theories.

The results of this study supports ACP. This implies a refutation of the privileged position of design as

cognition, design as rational action and design as methodical action. The presented evidence lends further

support to a growing body of evidence debunking procedural rationality and planning as the basis of

design and other professional activity (e.g., Love 2000; Nandhakumar and Avison 1999; Parnas and

Clements 1986; Schön 1983; Truex et al. 2000; Zheng et al. 2007). Moreover, these results undermine

claims that the phases and sequence of the Systems Development Lifecycle (which are subsumed by

FBS) are in any way inherent to software design – rather, the activities inherent to software design are

sensemaking, coevolution and implementation.

Second, the study supports the SCI Framework. To the best of my knowledge, this study is not just the

first empirical evaluation of the FBS and SCI Frameworks but of any software design process theory.

Third, this study provides a proof-of-concept for a new method of testing process theories. Although

some authors have previously recommended survey studies to test process theories (Poole et al. 2000;

Wolfe 1994), the method used here combines three more specific principles:

127

www.manaraa.com

• Test Comparatively. Simultaneously testing two plausible explanations of the same phenomenon

helps to mitigate the proclivity to cherry-pick evidence, focuses the study on controversial elements

(differences between theories) and guards against overemphasis of statistically significant but

practically insignificant findings.

• Bipolar Items. When testing two theories comparatively, one can create bipolar items such that each

theory is represented by one of the two poles.

• Distribution Interpretation. The skewness of the distribution indicates which theory is favored.

The extent of this skewness indicates the effect size.

One challenge of this type of research is in determining whether the skewness of the distribution is

statistically or practically significant. In this study, the skewness was so pronounced and the sample size

so large that significance was obvious. However, in smaller sample sizes and less skewed distributions, I

suggest that the most appropriate comparison is between the observed distribution and its reflection.

Comparing an observed distribution against a normal distribution is akin to evaluating the hypothesis

Variables A and B are related against the alternative hypothesis Variables A and B are unrelated. When

taking a comparative approach to testability, the hypothesis is Theory X is better and the alternative

hypothesis is Theory Y is better. A normal distribution does not represent this alternative hypothesis; a

reflected distribution does. Comparing the observed distribution to a normal or pseudo-normal

distribution tests the hypothesis against the conjecture that Theory X and Theory Y are not statistically

differentiable on the dimension in question. Comparing the observed distribution to a reflected

distribution test H1 against Ha. However, as I have done above, one may include a variety of statistical

comparisons and leave their interpretation to the reader.

4.5.2 Implications for Academics and Managers

Academics. As the epistemological stance employed here is based on comparative testability (Sober

1999), results favoring the SCI Framework are taken as direct support for this theory. Hence, the

implications described in this section are based on this philosophy and readers coming from different

128

www.manaraa.com

philosophical stances may disagree. This caveat noted, three implications for academics are evident. The

finding that design is emergent rather than cognitive has one primary implication for academics:

paradigms, theories, research design and design methodics that implicitly or explicitly assume that design

is cognitive should be heavily scrutinized. In addition, the SCI Framework is immediately useful for

research in at least three ways.

1. In a sense, the SCI Framework is a first draft of an Action-Centric design process theory. Hence, it

requires further testing (including in-depth field studies), fleshing out of some under-developed

concepts (including the internal dynamics of design agents), and extending to domains similar to

software (e.g., as greenfield engineering projects).

2. As this study undermines the Reason-Centric Perspective, it motivates critical examination of many

things based on Reason-Centric assumptions, including theories, paradigms, design methods, tools,

textbooks and educational curricula. For example, textbooks presenting design as a sequence of

analysis, design and implementation (e.g., Baltzan and Phillips 2008) may be misleading.

3. It may inform development of an antecedent theory of design project success. In a strict

interpretation of causality, causal theories imply precedence relationships. The SCI Framework

dispenses with Waterfall-like, artificial activity sequences. Therefore, it may help to eliminate

extraneous causal relationships during theory building (e.g., the hypothesis that analysis quality

causes design quality is incorrect a priori as analysis and design are cotemporal in practice).

Managers. For managers, assuming that design is emergent, rather than cognitive, implies that designers

will be more effective if they have better access to the design object’s intended environment, including

stakeholders and information about their sociopolitical context. Furthermore, the SCI Framework posits

that problem understanding and problem solving are cotemporal in practice, that code is written

iteratively and that the primary iterative artifact used by developers is source code (rather than m odels).

This does not mean that trying to separate analysis from design, write code linearly or iterate on models is

less effective. However, it does suggest the following.

129

www.manaraa.com

1. Developers may resist attempts to pressure them to separate analysis from design, write code

linearly or iterate on models. Developers may fake adherence to design methodologies that are

inconsistent with their natural way of working (Parnas and Clements 1986).

2. Managers who believe that their employees build software according to RCP (that is, rationally) or

using a Reason-Centric method (e.g., Waterfall) may be mistaken or deceived.

3. Implementing a tool, practice or method that is incompatible with iterative coding and simultaneous

analysis and design will likely be ineffective without corresponding changes in development

practices.

4. If developers do not understand the problems that they are solving until the solution is well into

development, it seems incredulous that they could produce accurate upfront budget and schedule

estimates. This questions the wisdom of organizing development using fixed price and schedule

contracts.

5. Since many computer science, computer engineering and information systems programs teach

development according to RCP, new graduates may be deeply confused as to the nature of

development practice.

4.5.3 Lessons Learned Regarding Viral Sampling

One challenge of this research was how to get a large number of busy professionals to take the time to

respond to a survey without any economic incentive. To this end, I devised a strategy comprising four

principles – the “four Ns” of viral sampling, listed below. Although I followed this strategy and

subsequently received a substantial number of responses, this obviously does not prove the strategy’s

effectiveness. I simply report these ideas hoping that they may benefit researchers with similar sampling

challenges.

1. The Name. At the time of writing, almost half a million people have taken the “Personality Type

Quiz” on Quibblo.com. I suspect that “Personality Type Quiz” sounds far more interesting to most

people than, for example, “Software Project Work Practices Questionnaire”. Instead of a dry,

130

www.manaraa.com

academic name, I marketed the survey as “Software Developer Personality Test,” which sounds

interesting as it addresses one’s own personality and is specific to one’s occupation.

2. The Nudge. In behavioral economics, a nudge “is any aspect of the choice architecture that alters

people’s behavior in a predictable way without forbidding any options or significantly changing

their economic incentives” (Thaler and Sunstein 2009, p. 6). Asking an individual to participate in a

study presents a choice architecture. I encouraged participation by promising immediate feedback –

at the end of the study, participants were classified into one of three “developer personality types”

based on their answers. This eliminated the need for an economic incentive.

3. The Network. Online social networks, including Twitter, Facebook and the blogosphere in general,

allow the astute researcher (or marketer) to exploit network effects in promoting a survey. For

instance, when Mr. Atwood tweeted about my questionnaire, many of his more than approximately

27 000 followers not only responded but also retweeted the link, that is, sent it to all of their

followers. This positive network effect effectively crowd sourced much of the invitation work.

4. The iNquiry. This questionnaire concerned a conflict between two perspectives on software design.

As this conflict manifests as arguments within software projects and developer education, it engages

developers. When asking people to participate or to encourage others to do so, having a question

relevant to their daily lives seemed to help.

In post-hoc analysis of Twitter traffic, I did not identify a single instance where an individual re-tweeted

the invite from someone with fewer followers. This leads responses to dwindle over time. It also suggests

that Twitter’s social network topology approximates a hub-and-spokes network (an interesting topic for

future research). If this is the case, overall responses and avoiding sampling bias both depend on the

number of hub twitterers recruited.

4.5.4 Limitations

The results of this study should be considered in light of five limitations:

131

www.manaraa.com

1. This study compared the SCI Framework to a particular interpretation of FBS, Galle’s (2009)

nominalist interpretation. Therefore, the evidence presented applies only to this interpretation – it

does not generalize to other FBS interpretations such as Galle’s realist interpretation, or Kruchten’s

(2005) software adaptation. Again, Galle’s nominalist interpretation was selected because it was

most compatible with RCP.

2. The sample is not random and may include some bias. For example, the popularity of agile methods

displayed in the sample has at least two explanations: 1) Agile methods have largely replaced plan-

driven methods in development practice; 2) Users of agile methods are over-represented in the

sample. If the second explanation holds, the conclusion that the SCI Framework better represents

design practice may be over-generalized. However, the finding that respondents who specifically

report using plan-driven methods score no differently than those using agile methods undermines

this challenge. A more thorough study of the issue could be accomplished by conducting followup

surveys or field studies on a sample specifically chosen for its heavily plan driven methods, such as

aerospace and defense contractors.

3. The limitations inherent to survey research, including lack of depth and responder bias, obviously

apply here. Phase two of the study (described below) is designed to mitigate these shortcomings.

4. As the test was comparative, the results do not indicate that the SCI Framework is unequivocally

“right” or “true”; the results simply favor the SCI Framework over its alternative.

5. Exploratory analyses should be interpreted with caution. While substantial effort was made to

collect and to report the data in an unbiased fashion, these results are incidental to the study’s

primary purpose; consequently, they do not enjoy as high a degree of confidence as the primary

conclusion.

4.5.5 Future Work (Phase 2)

As mentioned above, a multimethodological research design combining a survey with one or more in-

depth fields studies would provide more convincing evidence than either approach alone. Following this,

132

www.manaraa.com

the next phase of the current study involves comparatively evaluating the FBS and SCI Frameworks using

a field study to corroborate (or to contradict) and to add nuance to current evidence.

One form of field study with a rich methodological foundation in organizational research is the case study

(c.f. Benbasat et al. 1987; Dube and Pare 2003; Eisenhardt 1989; Lee 1989; Yin 2003). A case study is a

“comprehensive research strategy” that “investigates a contemporary phenomenon within its real-life

context, especially when the boundaries between phenomenon and context are not clearly evident …

[and] relies on multiple sources of evidence, with data needing to converge in a triangulating

fashion” (Yin 2003, p. 13-14). A case study approach is preferable when 1) the research focuses on how

things are done in practice, 2) the research focuses on contemporary events and 3) the research does not

necessitate behavioral manipulations (Yin 2003). The present situation clearly meets these criteria.

I propose a three-case design comprising two literal replications and one theoretical replication (two

studies of software development teams where the same result (SCI Framework superior) is predicted and

one study of an engineering design team, where a different result (FBS Framework superior) is

predicted). The proposed design is informed by the incisive summary of recommendations in (Yin 2003).

Data collection may include interviews, recording meetings, direct observation and copying relevant

artifacts (e.g., design diagrams). The resulting collection of statements, observations and artifacts can be

then coded according to a closed coding scheme based on the two theories. Specifically, for each concept

and relationship of each theory, related items of evidence would be classified ether as supporting or as

opposing. The extent of support for each theory would reflect the cumulative support for each concept

and relationship. At least two coders will be used to facilitating measurement of reliability through

intercoder agreement (Benbasat et al. 1987; Dube and Pare 2003; Lee 1989; Yin 2003).

Furthermore, the SCI Framework is in a first draft of sorts. After further testing, it may be improved and

fleshed out with new concepts, or with concepts borrowed from other fields such as architecture,

engineering and computer science. Furthermore, it may be used to study the relationship between

software design and design in other fields.
133

www.manaraa.com

4.5.6 Concluding Remarks

Simon (1996) argued that the shape and organization of the design process is an essential component of a

theory of design. Since “the shape and organization of the design process” in the software domain is

poorly understood (Freeman and Hart 2004; Simon 1996; Sullivan 2003; Wynekoop and Russo 1995),

this study began with the question, What is the nature of the process by which development teams create

software in practice?

In this paper, I addressed this question at two levels. At the more abstract level, this study investigated

whether software design is essentially cognitive or emergent. At the less abstract level, this study

investigated whether software design is better described by the SCI Framework or FBS. The SCI

Framework was explicitly created for compatibility with the view that design is emergent (ch. 3). The

degree to which FBS is compatible with the view that design is cognitive depends on how it is

interpreted; therefore, I used the most compatible interpretation, the nominalist interpretation (Galle

2009). Both the FBS and SCI Frameworks are telelological (goal oriented) process theories of design.

The results of a survey of more than 1300 programmers, analysts, testers and managers indicate that their

work practices are essentially emergent and better described by the SCI Framework, where design is

modeled as an improvised, emergent activity wherein a self-directing agent alternates between three

primary activities: 1) making sense of context; 2) iteratively evolving mental pictures of context and

software artifact; 3) writing code based on the mental picture of the software. Since the view of design as

a cognitive phenomenon has held a privileged position in design literature for many years, this evidence

calls into question much of the field’s conceptual research, the potential usefulness of popular design

methodologies and the conventional wisdom surrounding how software designers are educated and how

software projects are managed.

134

www.manaraa.com

CHAPTER 5: A SOFTWARE DESIGN SCIENCE

RESEARCH PROGRAM FOR THE NEXT DECADE

135

www.manaraa.com

This dissertation addresses three fundamental problems afflicting software design science. I addressed the

lack of a consistent demarkation of design phenomena by conducting a meta-analysis of definitions of

design and proposing conceptual models of design and software design projects (ch. 2). I addressed the

difficulties of understanding and operationalizing different perspectives on the nature of design by

synthesizing the Reason and Action-Centric Perspectives and operationalizing them using the FBS and

SCI Frameworks, respectively (ch. 3). Finally, I addressed the question of whether design is

predominately cognitive or emergent using a survey study, which supported the Action-Centric

Perspective and SCI Framework (ch. 4).

Now that a veracious software design process theory is available, numerous areas of software design

science research are evident. This chapter discusses four such areas (see Figure 5-1) and constructs a list

of topics for software design science.

Define domain of
interest (Design

Ontology)

Cluster existing
research on

software design

Propose action-
centric design
process theory

(SCI Framework)

Comparatively
test process

theories

Supported
Process
Theory

Improved design
methods, tools and

practices

Dissertation

Future Work

Best practice
advice for
designers

Evaluate design
practices w.r.t.

supported process
theory

Propose and test
causal theory of
design project

success

Propose and test
theories of adoption
and continued use of

design practices

Define "Design
Project Success" and

create measures

Process
Milestone

Define theoretical
criteria for effective

design practices

Evaluate model
curricula w.r.t

supported theory

Define theoretical
criteria for software

design curricula

Improved design
curricula and

teaching practices

Fig. 5-1. A Software Design Science Research Program

136

www.manaraa.com

5.1 DESIGN PROJECT SUCCESS

The first area involves developing a variance theory of design project success. Obviously, determining

what factors lead to successful design outcomes would be relevant to practitioners.

I suggest that one fundamental question of software design science is, ‘how to design better?’ One way of

answering this question is with a theory of the antecedents of better design. I suggest that Design Project

Success (DPS) is a suitable dependent variable for such a theory. Informally, DPS is a multidimensional

measure of the outcomes associated with a design project. Design Project Success is a broader, more

meaningful concept than design success because the former includes both process and product

considerations. Defining DPS may require combining aspects of stakeholder theory (Freeman 1984), the

information systems success construct (DeLone and McLean 1992, 2003), software quality metrics

(Boehm 1978) and project management success (Shenhar et al. 2001). Once DPS has been clearly

defined, instrument development studies may be necessary to devise a methods of measuring it. Next, a

meta analysis of the critical success factors literature (cf., Reel 1999) may facilitate theory generation.

Theory testing may involve some combination of survey, field and experimental research. This gives rise

to the first topic for software design science.

Topic 1: Theories of the antecedents of design project success

5.2 ADOPTION AND USE OF DESIGN METHODICS

The second area concerns adoption and use of design practices, tools and methods. Adoption and

continued use are popular topics in information systems research. The primary theoretical finding of this

literature is that adoption and use are primarily determined by effort and performance expectancy

(Venkatesh et al. 2003), that is, users’ expectations about the amount of effort using the technology will

require and the resulting impact on their performance. However, I suspect that design methodics are

adopted and abandoned through a complex negotiation between developers and managers (cf., Beck

137

www.manaraa.com

2005) where each group perceive different value propositions. I further conjecture that these value

propositions are largely determined by cognitive biases including the bandwagon effect, confirmation bias

and illusion of control, rather than the characteristics of, and evidence supporting, the design methodics

themselves. In support of this conjecture I point to the strong feelings often expressed by managers and

developers concerning the effectiveness of design methodics that have never been subjected to any

systematic empirical validation. These strong beliefs absent of strong supporting evidence indicates low

epistemic rationality (Stanovich 2009) among participants. Thoroughly investigating this process through

grounded-theory research or surveys and field studies may inform generation of an alternative theory of

adoption and use, which may then be tested against existing adoption and use theories in the software

development domain. Moreover, understanding the relationship between features of, participants’ beliefs

concerning, and subsequent adoption and use of design methodics may reveal conditions beyond effort

and performance expectancy required for good design methodics to proliferate. This gives rise to the

second topic for software design science.

Topic 2: Theories of the adoption and use methods, practices and technologies supporting

design

5.3 EFFECTIVENESS OF DESIGN METHODICS

The third area involves examining the effectiveness of existing design practices, tools and methods to

make practical recommendations concerning their use and improvement. As described in Chapter One,

empirical research on design methodics is extremely challenging. It is much easier and more efficient to

evaluate design methodics vis-à-vis the design process knowledge encapsulated in the SCI Framework. In

this way, obviously ineffective design methodics may be eliminated a priori, allowing empirical work to

concentrate on legitimate contenders.

Concerning methods, suppose a method is denoted “complete” if it contains substantial prescriptions

concerning all three fundamental design activities: sensemaking, coevolution and implementation.

138

www.manaraa.com

Furthermore, Chapter Four provides some indication of the methods most commonly used in practice. By

scoring the completeness of these methods we can gauge their potential usefulness. For example, a

method providing advice on all three fundamental design activities has higher potential usefulness than

one providing advice on only one activity; however, actual usefulness remains an empirical question.

Still, showing where methods are lacking is an important step toward improving them. This suggests two

more topics for software design science

Topic 3: Theories or measures of design method completeness

Topic 4: Completeness evaluations of common and novel design methods

Mathiassen observed that “current systems development methods … do not deal much with the crucial

issue of invention or what we have called the invention leap, with how one goes from the analysis of the

existing system to the concept of the new one” (1998, p. 102). In the SCI Framework, Mathiassen’s

“invention leap” is akin to coevolution. Furthermore, anyone familiar with the most commonly used

methods (i.e., Scrum, Extreme Programming, Test Driven Development, Service Oriented Architecture)

will recognize that they provide little to no guidance concerning coevolution. This raises the question,

what sort of advice can be given concerning coevolution?

Simon (1996) and Hevner et al. (2004) advise structuring design as a search process within a

multidimensional solution space. The conceptual problem with this is that real solution spaces are

unbounded and the dimensions may be unknown. Furthermore, people seldom engage in fully-disjunctive

reasoning (Stanovich 2009); i.e., considering the full range of possibilities. Indeed, prescribing a

separation of analysis from design, as in the Systems Development Lifecycle, may have been motivated

by the desire to promote fully disjunctive reasoning. However, since analysis and design are inextricably

linked in practice, it may be more effective to devise specific design practices intended to attenuate

known cognitive biases (another topic for software design science). Some such practices already exist; for

139

www.manaraa.com

example, some developers estimate task complexity by laying down estimation cards simultaneously to

avoid anchoring bias (Tversky and Kahneman 1974).

Topic 5: Specific design practices intended to attenuate known cognitive biases

Similarly, specific technologies may assist in each of the fundamental design activities. Sensemaking may

be aided through technologies such as diagrams software, qualitative coding software, whiteboards, and

physical story cards. Meanwhile, implementation may be aided by design patterns, automated testing

software and a host of integrated development environments. The precise effects of each of these

technologies on the overall design process warrants careful examination. In contrast, I am not aware of

any software tool designed to facilitate coevolution. Hence, topic six:

Topic 6: Technologies supporting the coevolution activity

5.4 REFORMING THE SOFTWARE DESIGN CURRICULA

The fourth area encompasses comprehensive analysis and reform of software design curricula. If

sensemaking, coevolution and implementation are the primary activities engaged in by software

designers, their education should include guidance on each of these activities. While a comprehensive

study of various software-related degree programs in hundreds of universities and technical colleges in

dozens of countries would be informative, it would be more practical to start with model curricula, such

as those offered by the Association for Computing Machinery1, and the Association for Information

Systems2, and accreditation requirements of bodies such as the Association to Advance Collegiate

Schools of Business.

Reforming the software design curricula requires a process comprising at least three stages. Firstly, a

meta-analysis of existing, empirically validated design guidance may be conducted, with guidance coded

140

1 http://www.acm.org/education/curricula-recommendations

2 http://blogsandwikis.bentley.edu/iscurriculum/index.php/Main_Page

http://en.wikipedia.org/wiki/Association_to_Advance_Collegiate_Schools_of_Business
http://en.wikipedia.org/wiki/Association_to_Advance_Collegiate_Schools_of_Business
http://en.wikipedia.org/wiki/Association_to_Advance_Collegiate_Schools_of_Business
http://en.wikipedia.org/wiki/Association_to_Advance_Collegiate_Schools_of_Business
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations
http://blogsandwikis.bentley.edu/iscurriculum/index.php/Main_Page
http://blogsandwikis.bentley.edu/iscurriculum/index.php/Main_Page

www.manaraa.com

according to a scheme based on the SCI Framework. Secondly, a sample of existing model curricula and

requirements may be coded according to the same scheme. Thirdly, the results of these analyses may be

compared, revealing in the curricula both the absence of useful guidance and the presence of unvalidated

concepts. This should produce specific recommendations for improving the model curricula, another topic

crucial to software design science research.

Topic 7: Recommendations for improving the education of software designers

Integrating better design guidance into model curricula and especially accreditation requirements will

generate intense pressure on both accredited and accreditation-seeking schools to incorporate better

design education into their programs. However, software developers are not like engineers – they come

from a variety of educational backgrounds and need not seek professional certification. Developing

professional degree programs and certifications for software developers may be pragmatically necessary

to substantially improve design education outcomes.

5.5 A RESEARCH AGENDA FOR SOFTWARE DESIGN SCIENCE

In this chapter, I enumerate a seven-part research program for software design science in the next decade.

With a concerted effort, I believe most or all of these topics can be addressed within the next ten years.

However, this requires numerous researchers to concentrate on these and other pragmatically critical

issues, resisting the temptation to migrate toward easier but less important studies. Although not

comprehensive, the following list touches on many key areas for software design science.

The Software Design Science Research Agenda

1. Theories of the antecedents of design project success

2. Theories of the adoption and use methods, practices and technologies supporting design

3. Theories or measures of design method completeness

4. Completeness evaluations of common and novel design methods

141

www.manaraa.com

5. Specific design practices intended to attenuate known cognitive biases

6. Technologies supporting the coevolution activity

7. Recommendations for improving the education of software designers

In addition to these topics, the SCI Framework may be useful outside of software. Applying or adapting

the SCI Framework to other design disciplines, such as architecture, product design and engineering,

would require coordinated studies to understand how these disciplines differ from software. As discussed

in Chapter Three, disciplines may undergo predictable shifts from Action-Centric to Reason-Centric

ideals as more Reason-Centric assumptions are met by expanding scientific knowledge. Furthermore, a

discipline’s adherence to Reason- or Action-Centric ideals may be related to identifiable factors, such as

the discipline’s maturity, the complexity of the design objects and the experience of designers.

Many authors have called for empirical work on software design (cf. Freeman and Hart 2004; Simon

1996; Sullivan 2003; Wynekoop and Russo 1995, 1997), yet, as I have shown in Chapter Four, the

literature is still largely non-empirical. The idea that design is an inherently cognitive activity continues to

occupy a privileged status, underlying many prominent concepts in design literature. This situation is

analogous to the primacy of the expected value hypothesis and theory of rationality in the economics

literature before Kahneman and his colleagues debunked these taken-for-granted concepts (Kahneman

and Tversky 1979; Tversky and Kahneman 1974). In this dissertation I have attempted to provide a

similar empirical refutation of the Reason-Centric Perspective by operationalizing it using a version of the

FBS Framework and providing evidence that core assumptions within this framework describe real

development behaviors less accurately than a process theory embedding contradictory assumptions. In

doing so, I created and gathered evidence supporting a new software design process theory, the SCI

Framework. This framework represents a holistic understanding of how software is created in practice. It

can be used to initiate or advance a variety of software design science research initiatives, including

generating theories of the causes of design project success and better understanding the use and effects of

142

www.manaraa.com

all manner of design methodics. Such endeavors require of researchers the tenacity to choose difficult but

practically important research over straightforward but inconsequential studies.

143

www.manaraa.com

BIBLIOGRAPHY

144

www.manaraa.com

"Annual report for the year ending september 30, 1988," Accreditation board for engineering and technology, Inc.,
New York, USA.

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. Agile software development methods: Review and analysis,
VTT Publications, Espoo, 2002.

Aghion, P., and Tirole, J. "Formal and real authority in organizations," Journal of Political Economy (105:1) 1997, p
1.

Alast, W.M.P.v.d. "Workflow verification: Finding control-flow errors using petri-net-based techniques," Business
Process Management: Models, Techniques, and Empirical Studies,(LNCS 1806), Springer-Verlag, Berlin, 2000,
pp. 161-183.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and S., A. A pattern language: Towns,
buildings, construction., Oxford University Press, 1977.

Alexander, C.W. Notes on the synthesis of form, Harvard University Press, 1964.
Alexandrou, M. "Systems development life cycle (SDLC)," 2010. Available: http://www.mariosalexandrou.com/

methodologies/systems-development-life-cycle.asp. Accessed: Mar 18, 2010
Alter, S. The work system method: Connecting people, processes, and it for business results, Work System Press,

2006.
Ambler, S. "A realistic look at object-oriented reuse," Software Development (6:1) 1998, pp 30-38.
Ambler, S. Agile modeling: Effective practices for extreme programming and the unified process, Wiley, 2002.
Archer, B. "Design as a discipline," Design Studies (1:1) 1979, pp 17-20.
Avgerou, C., and Cornford, T. "A review of the methodologies movement," Journal of Information Technology (8:4)

1993, pp 277-286.
Avison, D.E., and Fitzgerald, G. Information systems development: Methodologies, techniques and tools, Blackwell,

Oxford, 1988.
Baltzan, P., and Phillips, A. Business driven information systems, McGraw-Hill Irwin, 2008.
Bansler, J., and Bødker, K. "A reappraisal of structured analysis: Design in an organizational context," ACM

Transactions on Information Systems (11:2) 1993, pp 165-193.
Barnett, J. An introduction to urban design, Harper and Row Publishers Inc., New York, USA, 1982.
Bartels, A., Holmes, B.J., and Lo, H. "US slowdown in 2007 will dampen the $1.6 trillion global it market,"

Forrester Research, 2006.
Baskerville, R., and Pries-Heje, J. "Short cycle time systems development," Information Systems Journal (14:3)

2004, pp 237-264.
Baskerville, R., Travis, J., and Truex, D.P. "Systems without method: The impact of new technologies on

information systems development projects," Proceedings of the IFIP WG8.2 Working Conference on The Impact
of Computer Supported Technologies in Information Systems Development, North-Holland Publishing Co.,
Amsterdam, The Netherlands, 1992, pp. 241-269.

Beck, K. Test driven development: By example, Addison-Wesley Professional, 2002.
Beck, K. Extreme programming explained: Embrace change, (2nd ed.), Addison Wesley, Boston, MA, USA, 2005.
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,

Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas,
D. "Manifesto for agile software development," 2001. Available: http://www.agilemanifesto.org/. Accessed: June
22, 2010

Benbasat, I., Goldstein, D., and Mead, M. "The case research strategy in studies of information systems," MIS
Quarterly (11:3) 1987, pp 369-386.

Bera, P., and Wand, Y. "A framework to clarify the role of knowledge management systems," in: Pacific Asia
Conference on Information Systems (PACIS '09), Hyderabad, India, 2009.

Berente, N., and Lyytinen, K. "The iterating artifact as a fundamental construct for information system design," in:
1st International Conference on Design Science in Information Systems and Technology, Claremont, CA, USA,
2006.

Berger, P., and Luckmann, T. The social construction of reality : A treatise in the sociology of knowledge, Penguin,
London, 1966.

Blumrich, J.F. "Design," Science (168:3939) 1970, p 1151.

145

http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.agilemanifesto.org
http://www.agilemanifesto.org

www.manaraa.com

Boehm, B. "A spiral model of software development and enhancement," IEEE Computer (21:5), May 1988, pp
61-72.

Boehm, B.W. Characteristics of software quality, North-Holland, Amsterdam, 1978.
Bourque, P., and Dupuis, R. (eds.) Guide to the software engineering body of knowledge (SWEBOK). IEEE

Computer Society Press, 2004.
Bradel, B., and Stewart, K. "Exploring processor design using genetic programming," in: ECE1718 Special Topics

in Computer Hardware Design: Modern and Emerging Architectures, University of Toronto, Toronto, Ontario,
2004.

Breuer, T., Ndoundou-Hockemba, M., and Fishlock, V. "First observation of tool use in wild gorillas," PLoS Biol
(3:11), October 2005.

Buchanan, R. "Definition of design," Personal Communication. Received: Jan. 30, 2006.
Carroll, G., and Hannan, M.T. "Density delay in the evolution of organizational populations: A model and five

empirical tests," Administrative Science Quarterly (34) 1989, pp 411-430.
Casti, J. Paradigms lost., Avion Books, New York, USA, 1989.
Checkland, P. Systems thinking, systems practice, Wiley, Chichester, 1999.
Checkland, P., and Holwell, S. "Action research: Its nature and validity," Systemic Practice and Action Research

(11:1) 1998, pp 9-21.
Checkland, P., and Poulter, J. Learning for action, Wiley, 2006.
Churchman, C.W. The design of inquiring systems: Basic concepts of systems and organization, Basic Books, New

York, 1971.
Clark, A., and Chalmers, D. "The extended mind," Analysis (58:1) 1998, pp 7-19.
Coad, P., LeFebvre, E., and Luca, J.D. Java modeling in color with UML: Enterprise components and process,

Prentice Hall, 1999.
Complin, C. "The evolutionary engine and the mind machine: A design-based study of adaptive change," Doctoral

Dissertation, University of Birmingham, UK, 1997.
Curtis, B., Kellner, M.I., and Over, J. "Process modeling," Communications of the ACM (35:9) 1992, pp 75-90.
Dardenne, A., and Lamsweerde, A. "Goal-directed requirements acquisition," Science of Computer Programming

(20) 1993, pp 3-50.
DeLone, W.H., and McLean, E.R. "Information systems success: The quest for the dependent variable," Information

management (3) 1992, p 60.
DeLone, W.H., and McLean, E.R. "The DeLone and McLean model of information systems success: A ten-year

update," Journal of Management Information Systems (19:4), March 2003, pp 9-30.
Desmond, J.P. "The software 500: Applications go worldwide," in: Software Magazine, 2007.
Desouza, K.C., Awazu, Y., and Tiwana, A. "Four dynamics for bringing use back into software reuse," Commun.

ACM (49:1) 2006, pp 96-100.
DeVellis, R. Scale development: Theory and applications, (2nd ed.), Sage, Thousand Oaks, CA, USA, 2003.
Dobing, B., and Parsons, J. "How UML is used," Communications of the ACM (49:5), May 2006, pp 109-113.
Dorst, K., and Cross, N. "Creativity in the design process: Co-evolution of problem-solution," Design Studies (22),

September 2001, pp 425-437.
Dorst, K., and Dijkhuis, J. "Comparing paradigms for describing design activity," Design Studies (16:2) 1995, pp

261-274.
Dube, L., and Pare, G. "Rigor in information systems positivist case research: Currect practices, trends and

recommendations," MIS Quarterly (27:4), December 2003, pp 597-635.
Eckroth, J., Aytche, R., and Amoussou, G.-A. "Toward a science of design for software-intensive systems,"

Proceedings of the Second International Conference on Design Science Research in Information Systems and
Technology, Pasadena, CA, USA, 2007.

Eekels, J. "On the fundamentals of engineering design science: The geography of engineering design science. Part
1," Journal of Engineering Design (11), December 2000, pp 377-397.

Eekels, J. "On the fundamentals of engineering design science: The geography of engineering design science. Part
2," Journal of Engineering Design (12), September 2001, pp 255-281.

Eisenhardt, K.M. "Building theories from case study research," The Academy of Management Review (14:4) 1989,
pp 532-550.

146

www.manaraa.com

Ewusi-Mensah, K. Software development failures, MIT Press, 2003.
Fenton, N. "Software measurement: A necessary scientific basis," IEEE Transaction on Software Engineering (20:3)

1994, pp 199-206.
Finkelstein, L. "A review of the fundamental concepts of measurement," Measurement (2:I) 1984, pp 25-34.
Fitzgerald, B. "The transformation of open source software," MIS Quarterly (30:3) 2006.
FitzGerald, J., and FitzGerald, A. "Fundamentals of systems analysis," Wiley, USA, 1987.
Fowler, F.J. Improving survey questions: Design and evaluation, Sage, Thousand Oaks, CA, USA, 1995.
Freeman, P., and Hart, D. "A science of design for software-intensive systems," Communications of the ACM (47:8)

2004, pp 19-21.
Freeman, R.E. Strategic management: A stakeholder approach, Pitman, Boston, 1984.
Galle, P. "The ontology of Gero's FBS model of designing," Design Studies (30:4) 2009, pp 321-339.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design patterns: Elements of reusable object-oriented software,

Addison-Wesley, Boston, MA, USA, 1995.
Garlan, D., and Shaw, M. "An introduction to software architecture," Advances in software engineering and

knowledge engineering, World Scientific, 1993, pp. 1-39.
Gero, J.S. "Design prototypes: A knowledge representation schema for design," AI Magazine (11:4) 1990, pp 26-36.
Gero, J.S., and Kannengiesser, U. "The situated function-behaviour-structure framework," Design Studies (25:4)

2004, pp 373-391.
Gero, J.S., and Kannengiesser, U. "A function-behavior-structure ontology of processes," Artificial Intelligence for

Engineering Design, Analysis and Manufacturing (21:4) 2007, pp 379-391.
Gero, J.S., and Mc Neill, T. "An approach to the analysis of design protocols," Design Studies (19:1) 1998, pp

21-61.
Gladden, G.R. "Stop the life-cycle, I want to get off," SIGSOFT Software Engineering Notes (7:2) 1982, pp 35-39.
Goldstein, J. "Emergence as a construct: History and issues," Emergence (1:1) 1999, pp 49-72.
Grabowski, H., Lossack, R.-S., and El-Mejbri, E.-F. "Towards a universal design theory," in: Integration of process

knowledge into design support systems, University of Twente, Enschede, The Netherlands, 1999, pp. 47-56.
Graham, P. "Hackers and painters," 2003. Available: http://www.paulgraham.com/hp.html. Accessed: 21 June 2010
Gregor, S. "The nature of theory in information systems," MIS Quarterly (30:3) 2006, pp 611-642.
Gregor, S., and Jones, D. "The anatomy of a design theory," Journal of the Association for Information Systems

(8:5), May 2007, p 312.
Grüninger, M., and Fox, M.S. "Methodolgy for the design and evaluation of ontologies," Proceedings of the IJCAI

Workshop on Basic Ontological Issues in Knoweldge Sharing, AAAI Press, Menlo Park CA, USA, 1995.
Hacking, I. Scientific revolutions, Oxford University Press, New York, USA, 1982.
Hammer, M., and Champy, J. "Reengineering the corporation: A manifesto for business revolution," Business

Horizons (36:5) 1993, pp 90-91.
Hansen, S., Berente, N., and Lyytinen, K. "Requirements in the 21st century: Current practice and emerging trends,"

in: The Design Requirements Workshop, Cleveland, Ohio, USA, 2007.
Harris, D. Systems analysis and design: A project approach, Dryden Press, Texas, USA, 1995.
Harwell, M.R., and Gatti, G.G. "Rescaling ordinal data to interval data in educational research," Review of

Educational Research (71:1), January 1 2001, pp 105-131.
Hatchuel, A., and Weil, B. "C-K theory: Notions and applications of a unified design theory," in: The Herbert Simon

International Conference on "Design Sciences", Lyon, 2002, p. 22.
Hatchuel, A., and Weil, B. "A new approach of innovative design: An introduction to C-K theory," in: International

Conference on Engineering Design, Stockholm, Sweden, 2003.
Henderson-Sellers, B., and Edwards, J.M. "The fountain model for object-oriented system development," in: Object

Magazine, 1993, pp. 71-79.
Hevner, A.R., March, S.T., Park, J., and Ram, S. "Design science in information systems research," MIS Quarterly

(28:1), March 2004, pp 75-105.
Hinrichs, T.R. "Problem-solving in open worlds: A case study in design," Doctoral Dissertation, Georgia Institute of

Technology, Atlanta, GA, USA, 1992.
Hirschheim, R., Klein, H.K., and Lyytinen, K. Information systems development and data modeling: Conceptual

and philosophical foundations, Cambridge University Press, New York, NY, USA, 1995.

147

http://www.paulgraham.com/hp.html
http://www.paulgraham.com/hp.html

www.manaraa.com

Iivari, J., Hirschheim, R., and Klein, H.K. "A dynamic framework for classifying information systems development
methodologies and approaches," Journal of Management Information Systems (17:3) 2000, pp 179-218.

Jacobson, I., Booch, G., and Rumbaugh, J. The unified software development process, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

Jaeger, R.G., and Halliday, T.R. "On confirmatory versus exploratory research," Herpetologica (54), June 1998, pp
S64-S66.

Jayaratna, N. Understanding and evaluating methodologies: NIMSAD, a systematic framework, McGraw-Hill,
Maidenhead, UK, 1994.

Jobs, S. "Apple's one-dollar-a-year man," Fortune, 2000. Available: http://money.cnn.com/magazines/fortune/
fortune_archive/2000/01/24/272277/index.htm. Accessed: June 22, 2010

Kahneman, D., and Tversky, A. "Prospect theory: An analysis of decision under risk," Econometrica (47:2) 1979, pp
263-291.

Kessler, A. "Wsj: Weekend interview with facebook's mark zuckerberg," 2007.
Kimberly, J., and Miles, R. The organizational life cycle, Jossey-Bass, San Francisco, 1980.
Kroenke, D., Gemino, A., and Tingling, P. Experiencing MIS, (Second Canadian ed.), Pearson Prentice Hall,

Toronto, 2010.
Kruchten, P. The rational unified process: An introduction, (1st ed.), Addison-Wesley Professional, 1998.
Kruchten, P. The rational unified process: An introduction, (3rd ed.), Addison-Wesley Professional, 2003.
Kruchten, P. "Casting software design in the function-behavior-structure framework," IEEE Software (22:2) 2005,

pp 52-58.
Laudon, K., Laudon, J., and Brabston, M. Management information systems: Managing the digital firm, (Fourth

Canadian ed.), Pearson, Prentice Hall, Toronto, 2009.
Lee, A.S. "A scientific methodology for MIS case studies," MIS Quarterly (13:1) 1989, pp 33-50.
Lee, G., and Xia, W. "Toward agile: An integrated analysis of quantitative and qualitative field data," MIS Quarterly

(34:1) 2010, pp 87-114.
Levina, N. "Collaborating on multiparty information systems development projects: A collective reflection-in-action

view," Information Systems Research (16:2) 2005, pp 109-130.
Love, T. "Philosophy of design: A meta-theoretical structure for design theory," Design Studies (21) 2000, pp

293-313.
Love, T. "Constructing a coherent cross-disciplinary body of theory about designing and designs: Some

philosophical issues," Design Studies (23:3), May 2002, pp 345-361.
Lyytinen, K. "A taxonomic perspective of information systems development: Theoretical constructs and

recommendations," Critical Issues in Information Systems Research, John Wiley & Sons, Inc., New York, USA,
1987, pp. 3-41.

Maher, M., Poon, J., and Boulanger, S. "Formalising design exploration as co-evolution: A combined gene
approach," in: Preprints of the Second IFIP WG5.2 Workshop on Advances in Formal Design Methods for CAD,
J.S.G.F. Sudweeks (ed.), Key Centre of Design Computing, 1995, pp. 1-28.

March, J.G., and Simon, H.A. Organizations, Wiley, New York, 1958.
March, L. "The logic of design," in: Developments in design methodology, N. Cross (ed.), John Wiley & Sons,

Chichester, 1984, pp. 265-276.
March, S.T., and Smith, G.F. "Design and natural science research on information technology," Decision Support

Systems (15:4) 1995, pp 251--266.
Markus, M.L., and Robey, D. "Information technology and organizational change: Causal structure in theory and

research," Management Science (34:5) 1988, pp 583-599.
Martin, J. Rapid application development, Macmillan Publishing, Indianapolis, IN, USA, 1991.
Mathiassen, L. "Reflective systems development," Doctoral Dissertation, Aalborg University, Aalborg, Denmark,

1998, 537 Pages.
McCracken, D.D., and Jackson, M.A. "Life cycle concept considered harmful," SIGSOFT Software Engineering

Notes (7:2) 1982, pp 29-32.
Meyer, B. "Reusability: The case for object-oriented design," in: Software reuse: Emerging technology, IEEE

Computer Society Press, 1988, pp. 201-215.

148

http://money.cnn.com/magazines/fortune/fortune_archive/2000/01/24/272277/index.htm
http://money.cnn.com/magazines/fortune/fortune_archive/2000/01/24/272277/index.htm
http://money.cnn.com/magazines/fortune/fortune_archive/2000/01/24/272277/index.htm
http://money.cnn.com/magazines/fortune/fortune_archive/2000/01/24/272277/index.htm

www.manaraa.com

Mili, H., F., M., and A., M. "Reusing software: Issues and research directions," IEEE Transactions on Software
Engineering (21:6) 1995, pp 528-562.

Miller, W. "The definition of design," 2005. Available: http://www.methodjournal.com/artman/publish/
Digital_Design/article_13.shtml. Accessed: 1 Dec., 2009.

Mohr, L.B. Explaining organizational behavior, Jossey-Bass, San Francisco, 1982.
Mulcahy, N., and Call, J. "Apes save tools for future use.," Science (312:5776) 2006, pp 1038-1040.
Nandhakumar, J., and Avison, D. "The fiction of methodological development: A field study of information systems

development," Information Technology & People (12:2), February 1999, pp 176-191.
Naur, P. "Understanding turing's universal machine: Personal style in program description," The Computer Journal

(36:4) 1993, pp 351-372.
Neal, M.A., and Northcraft, G.B. "Behavioral negotiation theory: A framework for conceptualizing dyadic

bargaining," in: Research in organizational behavior, L.L. Cummings and B.M. Staw (eds.), JAI Press,
Greenwich, CT, 1991, pp. 147-190.

Newell, A., and Simon, H. Human problem solving, Prentice-Hall, Inc., 1972, 920 pages.
Noy, N.F., and Hafner, C.D. "The state of the art in ontology design," in: AI Magazine, 1997, pp. 53-74.
Nunamaker, J.F., Chen, M., and Purdin, T.D.M. "Systems development in information systems research," Journal of

Management Information Systems (7:3), Winter 1991, pp 89-106.
Pahl, G., and Beitz, W. Engineering design: A systematic approach, Springer-Verlag, London, 1996.
Palvia, P., and Nosek, J. "An empirical evaluation of system development methodologies," Information Resource

Management Journal (3:3) 1990, pp 23-32.
Papanek, V. Design for human scale, Van Nostrand Reinhold Company, New York, USA, 1983.
Parnas, D.L., and Clements, P.C. "A rational design process: How and why to fake it," IEEE Transactions on

Software Engineering (12:2) 1986, pp 251-257.
Pfeffer, J. Managing with power. Politics and influence in organizations., Harvard Business School Press, Boston,

MA, USA, 1992.
Pinker, S. The blank slate: The modern denial of human nature, Penguin, 2002.
Polya, G. How to solve it: A new aspect of mathematical method, (2nd ed.), Princeton University Press, Princeton,

New Jersey, USA, 1957.
Poole, M., Van de Ven, A.H., Dooley, K., and Holmes, M.E. Organizational change and innovation processes theory

and methods for research, Oxford University Press, New York, NY, USA, 2000, 406 pages.
Popper, K. The logic of scientific discovery, Basic Books, New York, NY, USA, 1959.
Purao, S., Rossi, M., and Bush, A. "Towards an understanding of problem and design spaces during object-oriented

systems development," Information and Organizations (12:4) 2002, pp 249-281.
Pye, D. The nature of design, Studio Vista, London, 1964.
Reel, J.S. "Critical success factors in software projects," IEEE Software (16:3) 1999, pp 18-23.
Reubenstein, H.B., and Waters, R.C. "The requirements apprentice: Automated assistance for requirements

acquisition," IEEE Transactions on Software Engineering (17:3) 1991, pp 226-240.
Richardson, J. Basic design, Prentice-Hall, New Jersey, 1984.
Roberts, F. Measurement theory with applications to decision making, utility. And the social sciences, Addison

Wesley, Reading, MA, 1979.
Roozenburg, N., and Eekels, J. Product design: Fundamentals and methods, Wiley, Chichester, UK, 1995.
Rosenman, M.A., and Gero, J.S. "Purpose and function in design: From the socio-cultural to the techno-physical,"

Design Studies (19) 1998, pp 161-186.
Royce, W.W. "Managing the development of large software systems: Concepts and techniques," Proceedings of

Wescon, 1970.
Schmidt, D.C. "Guest editor's introduction: Model-driven engineering," IEEE Computer (39:2) 2006, pp 25-31.
Schön, D.A. The reflective practitioner: How professionals think in action, Basic Books, USA, 1983.
Schurch, T.W. "Reconsidering urban design: Thoughts about its definition and status as a field or profession,"

Journal of Urban Design (4:1) 1999, pp 5-28.
Schwaber, K., and Beedle, M. Agile software development with scrum, Prentice Hall, 2001.
Shenhar, A.J., Dvir, D., Levy, O., and Maltz, A.C. "Project success: A multidimensional strategic concept," Long

Range Planning (34:6) 2001, pp 699-725.

149

http://www.methodjournal.com/artman/publish/Digital_Design/article_13.shtml
http://www.methodjournal.com/artman/publish/Digital_Design/article_13.shtml
http://www.methodjournal.com/artman/publish/Digital_Design/article_13.shtml
http://www.methodjournal.com/artman/publish/Digital_Design/article_13.shtml

www.manaraa.com

Siddiqi, J., and Shekaran, M. "Requirements engineering: The emerging wisdom," IEEE Software, March 1996, pp
15-19.

Sim, S.K., and Duffy, A.H.B. "Towards an ontology of generic engineering design activities," Research in
Engineering Design (14:4), November 2003, pp 200-223.

Simon, H.A. The sciences of the artificial, (1st ed.), MIT Press, Cambridge, MA, USA, 1969.
Simon, H.A. The sciences of the artificial, (3rd ed.), MIT Press, Cambridge, MA, USA, 1996.
Singer, E.A. Experience and reflection, University of Pennsylvania Press, 1959.
Sircar, S., Nerur, S.P., and Mahapatra, R. "Revolution or evolution? A comparison of object-oriented and structured

systems development methods.," MIS Quarterly (25:4), December 2001, pp 457-471.
Sober, E. "Testability," Proceedings and Addresses of the American Philosophical Association (73:2) 1999, pp

47-76.
Soffer, P., and Wand, Y. "Goal-driven analysis of process model validity," in: Advanced Information Systems

Engineering, 2004, pp. 521-535.
Sommerville, I. Software engineering, (5th ed.), Addison Wesley, Redwood City, CA, USA, 1996, 742 pages.
Stanovich, K. What intelligence tests miss: The psychology of rational thought, Yale University Press, New Haven,

CT, USA, 2009, 308 pages.
Straub, D.W. "Validating instruments in MIS research," MIS Quarterly (13:2) 1989, pp 147-169.
Strogatz, S.H. Nonlinear dynamics and chaos, Addison-Wesley, Reading, MA, USA, 1994.
Stumpf, R., and Teague, L. Object-oriented systems analysis and design with UML, Pearson Prentice Hall, New

Jersey, USA, 2005.
Suchman, L. Plans and situated actions: The problem of human-machine communication, Cambridge University

Press, 1987.
Suh, N. The principles of design, Oxford University Press, New York, NY, USA, 1990.
Suh, N. "Design and operation of large systems," Journal of Manufacturing Systems (14:3) 1995, pp 203-213.
Suh, N. "Axiomatic design theory for systems," Research in Engineering Design (10) 1998, pp 189-209.
Suh, N. Axiomatic design: Advances and applications, Oxford University Press, New York, NY, USA, 2001.
Sullivan, K. "Preliminary report: NSF workshop on the science of design: Software and software-intensive

systems," University of Virginia Department of Computer Science, Airlie Center.
Thaler, R.H., and Sunstein, C.R. Nudge: Improving decisions about health, wealth, and happiness, Yale University

Press, New Haven, CT, USA, 2009.
The Partners of Pentagram Living by design, Lund Humphries, London, 1978.
Tomiyama, T., and Yoshikawa, H. "Extended general design theory," in: IFIP WG 5.2 Working Conference on

Design Theory for CAD, H. Yoshikawa and E. Warman (eds.), North-Holland, Tokyo, Japan, 1985.
Truex, D., Baskerville, R., and Travis, J. "Amethodical systems development: The deferred meaning of systems

development methods," Accounting, Management and Information Technologies (10:1) 2000, pp 53-79.
Turner, J. "Understanding the elements of system design," Critical Issues in Information Systems Research, Wiley,

Chichester, UK, 1987, pp. 97-111.
Tversky, A., and Kahneman, D. "Judgment under uncertainty: Heuristics and biases," Science (185:4157) 1974, pp

1124-1131.
Urban Design Group "Urban design as a career," 2003. Available: http://www.udg.org.uk/?document_id=468.

Accessed: June 22, 2010.
Van de Ven, A.H., and Poole, M.S. "Explaining development and change in organizations," The Academy of

Management Review (20:3), July 1995, pp 510-540.
van Engers, T.M., Gerrits, R., Boekenoogen, M., Glass, E., and Kordelaar, P. "Power: Using UML/OCL for

modeling legislation - an application report," ICAIL '01: Proceedings of the 8th international conference on
Artificial intelligence and law, ACM Press, New York, NY, USA, 2001, pp. 157-167.

van Lamsweerde, A. "Goal-oriented requirements engineering: A guided tour," Proceedings of the Fifth IEEE
International Symposium on Requirements Engineering, 2001, pp. 249-262.

Venkatesh, V., Morris, M.G., Davis, G.B., and Davis, F.D. "User acceptance of information technology: Toward a
unified view.," MIS Quarterly (27:3), September 2003, pp 425-478.

Vermaas, P.E., and Dorst, K. "On the conceptual framework of John Gero's FBS-model and the prescriptive aims of
design methodology," Design Studies (28:2) 2007, pp 133-157.

150

http://www.udg.org.uk/?document_id=468
http://www.udg.org.uk/?document_id=468

www.manaraa.com

Walls, J.G., Widmeyer, G.R., and El Sawy, O.A. "Building an information system design theory for vigilant eis,"
Information Systems Research (3:1), March 1992, pp 36-59.

Walz, D.B., Elam, J.J., and Curtis, B. "Inside a software design team: Knowledge acquisition, sharing, and
integration," Communications of the ACM (36:10) 1993, pp 63-77.

Weick, K. Sensemaking in organizations, Sage, Thousand Oaks, CA, USA, 1995.
Weick, K.E., Sutcliffe, K.M., and Obstfeld, D. "Organizing and the process of sensemaking," Organization Science

(16:4) 2005, pp 409-421.
Whitley, E.A. "Method-ism in practice: Investigating the relationship between method and understanding in web

page design," Proceedings of the 19th International Conference on Information Systems (ICIS), Helsinki,
Finland, 1998, pp. 68-75.

Wolfe, R.A. "Organizational innovation: Review, critique and suggested research directions," Journal of
Management Studies (31:3) 1994, pp 405-431.

Wynekoop, J., and Russo, N. "Systems development methodologies: Unanswered questions," Journal of
Information Technology (10:2), June 1995.

Wynekoop, J., and Russo, N. "Studying system development methodologies: An examination of research methods,"
Information Systems Journal (7), January 1997, pp 47-65.

Yin, R. Case study research: Design and methods, (3rd ed.), Sage Publications, California, USA, 2003.
Yoshikawa, H. "General design theory," in: The IFIP WG 5.2-5.3 Working Conference, T. Sata and E. Warman

(eds.), North Holland, Amsterdam, 1980, pp. 35-57.
Zheng, Y., Venters, W., and Cornford, T. "Agility, improvisation and enacted emergence," International Conference

on Information Systems, Montreal, Canada, 2007.

151

www.manaraa.com

APPENDICES

152

www.manaraa.com

APPENDIX A: DISMISSING THE SDLC

This section is motivated by the many dichotomous discussions I have had with academics and

practitioners concerning The Systems Development Lifecycle (SDLC). Anecdotally speaking, for every

person I have met who believes that SDLC is an absurdity no one takes seriously, I have met another who

believes that SDLC is the fundamental basis of all systems development. Many people in each group

appear unaware that the other group even exists. This necessitates an open discussion of the role of SDLC

in design research, practice and education. I open this discussion by asserting the following.

Position: The Systems Development Lifecycle is a toxic concept.

SDLC (Figure 1) is a somewhat nebulous concept that may refer to:

1. A process theory (Van de Ven and Poole 1995) that describes systems development in terms of a

discrete number of sequential phases, including planning, analysis, design and coding, or variants

thereof.

2. A systems development method (SDM) (Wynekoop and Russo 1997) resembling one or more

variants of the Waterfall Model (Royce 1970)

3. Any set of steps for creating a technological artifact

For the purposes of this paper, toxic concepts are ideas that are both false and harmful (defined formally

below). For example, in educational psychology, the blank slate hypothesis (the view that the mind lacks

innate traits) is a toxic concept as it has been refuted by neurobiological studies and deleteriously affects

educational methods (Pinker 2002).

Toxic Concept: a theory, construct, argument, technology, or other idea that 1) is untrue, inaccurate or

refuted and 2) causes confusion, practical hardship or deleterious action.

153

www.manaraa.com

System
Requirements

Software
Requirements

Analysis

Program Design

Coding

Testing

Operations

Observation

Induction

Deduction

Testing

Problem

Facts

Hypotheses

Predictions

Veracity of Hypotheses

Evaluation

New Knowledge

Waterfall Model Scientific Method

Fig. A-1. SDLC (left) and Cycle of Scientific Inquiry (Roozenburg and Eekels 1995) (right)

A.1 SDLC as a Theory

A process theory is an explanation of how and why an entity changes and develops (Van de Ven and

Poole 1995). Coupling a model of SDLC (as in Figure 1) with a claim that it either describes all systems

development or (equivalently) that its elements or structure are inherent to development is commensurate

with claiming that SDLC is a process theory.

Though rarely stated, implicit claims that SDLC is a veracious process theory pervade research, teaching

and practice. For example, in a well-cited paper in MIS Quarterly, Fitzgerald (2006) states that “in

conventional software development, the development lifecycle in its most generic form comprises four

broad phases: planning, analysis, design, and implementation” (p. 3) and then describes the presence of

these phases in open-source software development. In a popular introductory MIS textbook, Laudon et al.

(2009) state that “systems development … consist[s] of systems analysis, systems design, programming,

154

www.manaraa.com

testing, conversion and production and maintenance … which usually take place in sequential order.”

Similarly, at the time of writing, the SDLC Wikipedia article states that “SDLC adheres to important

phases that are essential for developers, such as planning, analysis, design, and implementation.”

Moreover, the traditional SDLC phases are explicitly adopted in the official IEEE Guide to the Software

Engineering Body of Knowledge (Bourque and Dupuis 2004), although it does not imply linear

sequencing. In summary, implicit and explicit claims of SDLC universality remain prevalent in research,

teaching and practice.

The claim that SDLC describes all systems development has been unequivocally refuted by empirical

research. This finding is independent of the precise phases employed or their sequence. For example, in

field studies of expert designers, Schön found evidence indicating that designers do “not keep means and

ends separate” or “separate thinking from doing” (1983, p. 69). Meanwhile, Bansler & Bødker (1993)

found that developers may claim to follow a method while practically ignoring it. Additionally, in a study

of “a large scale system development effort”, Zheng et al. (2007) found that “home-gown methods and ad

hoc activities appear to dominate the day-to-day practices of systems development” (p. 1). Furthermore,

in Chapter 4, I found that the a generalized model of SDLC does not accurately represent software design

practice. Moreover, the XP and Agile Development Conferences feature multitudinous experience reports

irreconcilable with SDLC-thinking. More generally, “any form of life cycle is a project management

structure imposed on system development. To contend that a life cycle scheme, even with variations, can

be applied to all system development is either to fly in the face of reality or to assume a life cycle so

rudimentary as to be vacuous” (McCracken and Jackson 1982, p. 30).

A.2 SDLC as a Method

Some argue that a waterfall-like SDLC is a SDM, i.e., it is one way to build software. This view is

common in MIS research (e.g., Lee and Xia 2010; Sircar et al. 2001). Furthermore, Royce originally

proposed SDLC as “a more grandiose approach to software development” than a method comprised only

of analysis and coding (1970, p. 328). This view was elaborated by Boehm (1988). SDLC is often

155

www.manaraa.com

contrasted with various Agile methods (Abrahamsson et al. 2002), and a case is made that each is

effective in different circumstances. This is the approach taken by several introductory MIS textbooks

(e.g., Baltzan and Phillips 2008; Kroenke et al. 2010). Moreover, proponents of agile methods often

position them as more effective alternatives to SDLC (e.g., Beck 2005; Schwaber and Beedle 2001).

Positioning SDLC as a method involves two claims: 1) that SDLC is in some way effective; 2) that it is

possible, in principle, to develop systems using it.

The claim that SDLC is an effective method lacks empirical support. I have never encountered an

experimental study comparing SDLC to alternative methods. I have found no multiple-case studies

contrasting teams using SDLC with teams employing other methods. I have identified no analyses of

secondary data evaluating the effect of SDLC on outcome variables such as project success or software

success. I did find one survey evaluating SDLC against a prototyping methodology (Palvia and Nosek

1990); however, it explicitly assumed that SDLC describes all software development, thus its support for

SDLC as a method is circular. In summary, I found no credible evidence that SDLC is effective in any

sense. While this does not refute the claim, we have several reasons to believe SDLC is ineffective. The

author generally credited with proposing SDLC affirmed that its simplest version “has never worked on

large software development efforts” (Royce 1970, p. 335). Furthermore, SDLC ignores end-user

development and end-user involvement outside of requirements specification and “rigidifies thinking”,

increasing developers’ resistance to change (McCracken and Jackson 1982, p. 31). Moreover, the tightly-

coupled nature of the life cycle stages exacerbates problems by making it difficult to modify either

requirements or the software without setting off complex downstream or upstream revisions (Gladden

1982, p. 36). Additionally, SDLC is “risky and invites failure” because testing occurs at the end and many

of the phenomena of interest are “not precisely analyzable” (Royce 1970, p. 329). Also, SDLC justifies

intensive upfront analysis by citing a steep cost-of-change curve, but the steepness of the curve is not a

feature of software projects but a feature of waterfall-like processes (Ambler 2002; Beck 2002). Finally,

SDLC assumes that human developers are capable of correctly getting the requirements, design and tests

156

www.manaraa.com

correct on the first try. As the burden of proof (of effectiveness) for any method lies with its proponents,

no proof has been provided, and we have many strong reasons to question SDLC’s potential

effectiveness, on the balance of evidence, this claim is unsupported.

The claim that SDLC describes any systems development practice can be challenged on several grounds.

First, “the development process itself changes the user's perceptions of what is possible, increases his or

her insights into the applications environment, and indeed often changes that environment itself;”

therefore, “systems requirements cannot ever be stated fully in advance, not even in

principle” (McCracken and Jackson 1982, p. 31). Second, the descriptions of the stages of SDLC are

“imprecise, ambiguous, incomprehensible” (Curtis et al. 1992, p. 75). Third, SDLC separates analysis

from design, where the former generates an understanding of the problem and the latter generates a

solution, without providing any guidance as to how the solution is generated. Since software problems are

unbounded (unlike arithmetic problems), even a deep understanding of the problem does not necessarily

make the solution evident. Fourth, a waterfall-like SDLC confuses “phases” with activities; for example,

analysis is not a phase, it is an activity that is necessary not only for requirements modeling but also for

coding and testing. Therefore, on a balance of evidence, this claim is also unsupported.

A.3 SDLC as a Class of Phenomena

Some suggest that a SDLC simply describes a development project’s stages (Alexandrou 2010); hence,

different projects have different SDLCs. In this interpretation, SDLC obviously cannot be false (and

therefore cannot be toxic) as it is not coupled with any empirical claim. I return to this issue below.

A.4 How SDLC Causes Harm

SDLC causes identifiable harm in many ways. First, as SDLC is presented as either a valid description or

an effective method of software design in many SA&D courses and texts, it confuses students regarding

the true nature of software development and encourages unjustified faith in a deeply flawed approach.

Second, it creates conflicts between managers (who try to drive projects through phases, schedules and

157

www.manaraa.com

costs) and developers (who do not adopt these phases and cannot accurately estimate costs) (Beck 2005).

Third, insofar as SDLC-thinking underlies design methods, tools and practices, their practical usefulness

is hampered. Fourth, the prevalence of SDLC-thinking impedes publishing engineering and behavioral

research on design aides rooted in more realistic design theories. Finally, I suggest that as “SDLC” has

become inextricably confounded with the stages of the waterfall model, using the same term to denote

any sequence of stages resulting in a technological artifact only exacerbates the confusion and conflict

described above.

A.5 Conclusion

In conclusion, if SDLC is considered a theory, substantial empirical findings refute its veracity. If SDLC

is considered a method, no scientific evidence supports its effectiveness, and many sound arguments that

it is impossible in principle exist. These arguments hold regardless of precisely how the stages are divided

(e.g., five-stage model, seven-stage model) and whether backtracking or loops are included. Moreover,

although using SDLC to denote any development process is not wrong, when combined with its historical

usage, this too exacerbates confusion. Furthermore, as software development literature is replete with

unreferenced, unsupported empirical claims regarding the centrality of SDLC concepts, SDLC causes

significant harm and confusion among practitioners, managers and students alike. Therefore, the Software

Development Lifecycle is a toxic concept.

A.6 An Alternative to SDLC

Identifying problems with SDLC is of limited usefulness without suggesting alternatives. Fortunately,

better alternatives are available. SDLC may be replaced by an alternative software design process theory,

specifically the Sensemaking-Coevolution-Implementation (SCI) Framework (ch. 3). Whereas SDLC is a

lifecycle process theory (Van de Ven and Poole 1995), the SCI Framework is a teleological process

theory, i.e., an explanation of how and why an entity changes wherein change is manifested by a goal-

seeking agent that engages in activities in a self-determined sequence (Churchman 1971; Singer 1959;

158

www.manaraa.com

Van de Ven and Poole 1995). The core claim of the SCI Framework is that developers engage in three

activities to produce software – making sense of the project context, iterating between ideas about the

context and artifact, and implementing the artifact in code. The results of the questionnaire study reported

in Chapter 4, indicate that the SCI Framework describes software development practice more accurately

than SDLC (as the SDLC is a special case of the FBS Framework, against which the SCI Framework was

tested).

159

www.manaraa.com

APPENDIX B: ANALYSIS OF EXISTING DEFINITIONS OF DESIGN

We have identified at least 33 definitions of design and sub-types of design (such as “software design”

and “urban design”) in the literature. Though design has several meanings, we have focused on the

meaning involving plans for an object and planning or devising as a process.We employed judgment

sampling and snowball sampling, i.e., we made educated guesses as to where to look, and then

investigated promising references. This strategy was consistent with our goal of identifying as many

relevant definitions as possible.

To evaluate the definitions we applied a set of four main criteria: coverage, meaningfulness,

unambiguousness and ease of use (see Table A-1). The first three are derived from the evaluation criteria

for good theories mentioned, for example, by Casti (1989, p. 44-45). The fourth is a pragmatic criterion.

We do not claim that these are the best criteria, but, in the absence of a guiding theory for evaluating

definitions, that they are reasonable and have face validity.

Table A-1. General Definition Evaluation Criteria

Criterion Definition Example of Error

Necessary

Coverage

Proper coverage means including all appropriate
phenomena (completeness), and only appropriate
phenomena. If a definition has improper coverage, it
excludes at least one phenomenon that it should
include or includes at least one phenomenon it should
not.

Defining “human communication” to
include only speech, will not address
non-verbal communication (e.g. body
language).

Necessary
Meaningfulness

Each term comprising a definition must have a
commonly accepted meaning in the given context or
must have been pre-defined. Each combination of
terms must be directly understandable from the
meaning of terms, or have been predefined.

Defining a zombie as ‘the living dead’ is
inappropriate because, even though
‘living’ and ‘dead’ have commonly
accepted meanings, their juxtaposition
forms an oxymoron.

Necessary

Unambiguousness

Each term comprising a definition must have exactly
one meaning in the given context; furthermore, the
definition as a whole must have only one valid
interpretation.

Defining political oratory as ‘oral
rhetoric related to politics’ is
inappropriate because ‘rhetoric’ is a
contronym, i.e., has two contradictory
meanings.

Optional Ease of Use

Ideally, a definition should be easy to understand and
remember, applicable in disparate situations, and
readily differentiate between included and excluded
phenomena. Simplicity, parsimony and concreteness
are all aspects of Ease of Use. These aspects are at
least in part subjective and depend on who uses the
definition.

Defining the Natural Numbers as ‘the
smallest set satisfying the two
properties:
A) 1 is in N; and B) if n is in N, then n +
1 is in N” while clearly correct, would
score poorly on Ease of Use in a low-
level mathematics class.

160

www.manaraa.com

To give the reader a sense of the thought process behind the analysis, we discuss two representative

examples of the definitions encountered. The first example is by van Engers et al. (2001), who define

design as “the creative process of coming up with a well-structured model that optimizes technological

constraints, given a specification.” This definition has both meaningfulness and coverage problems. First,

the meaning of ‘optimizes technological constraints’ is unclear. In optimization techniques, one optimizes

the characteristics of an object subject to constraints, not the constraints themselves. Second, the use of

“well-structured” paints an idealistic portrait of design. This confounds the notion of design with

measures for design quality. For example, an inexperienced computer science student can design a

personal organizer application. The application might not be “well-structured”, but is nonetheless

designed. Thus, this definition omits activities that are clearly design. The second example is that of

Hinrichs (1992) who defines design as “the task of generating descriptions of artifacts or processes in

some domain” (p. 3). This also has coverage problems. “My chair is grey” is a description of an artifact in

a domain, but is clearly not a design. The problem here is that the definition relates to previously designed

artifacts. Thus, this definition includes phenomena that are not design.

The complete analysis of existing definitions is presented in Table A-2. Of the 33 definitions identified,

we have found that all seem to have coverage problems, at least 12 have meaningfulness problems and at

least three have some form of ambiguity.

Table A-2. Analysis of Existing Definitions

Source Definition Criticism
(Accred.
Board, 1988)

“Engineering design is the process of devising a system,
component, or process to meet desired needs. It is a
decision making process (often iterative), in which the basic
sciences, mathematics, and engineering sciences are applied
to convert resources optimally to meet a stated objective.”

Coverage – the definition is idealistic and
unnecessarily limiting in its use of “optimally.”
E.g., the building in which I work is far from
optimal, but it was still designed.
Meaningfulness – it is not clear what “desired
needs” are.

(Alexander
1964)

“The process of inventing physical things which display
new physical order, organization, form, in response to
function.”

Coverage – this definition excludes the design of
intangible things, such as processes.
Unambiguousness – it is not clear whether thing
must display new physical order, organization
AND form, or new physical order, organization
OR form.

161

www.manaraa.com

Source Definition Criticism
(Archer 1979) “Design is, in its most general educational sense, defined as

the area of human experience, skill and understanding that
reflects man’s concern with the appreciation and adaptation
in his surroundings in the light of his material and spiritual
needs.”

Coverage – design is an activity, not an “area of
human experience…” One can design with little or
no experience, skill and understanding. E.g., the
application programmer who designs a graphical
user interface without experience in, skill in or
understanding of the principles of interface design.

(Beck 2005) “Designing is creating a structure that organizes the logic in
the system”

Coverage – excludes forms of design that organize
things other than logic, e.g., urban planning
organizes space.

(Blumrich
1970)

“Design establishes and defines solutions to and pertinent
structures for problems not solved before, or new solutions
to problems which have previously been solved in a
different way.”

Coverage – Unnecessarily limits design to
solutions not previously solved. Excludes
independent invention and finding new ways to
solve old problems. E.g., by this definition, new
cars are not designed because we already have
cars.

(Bourque and
Dupuis 2004)

“Design is defined in [IEEE610.12-90] as both “the process
of defining the architecture, components, interfaces, and
other characteristics of a system or component” and “the
result of [that] process.” Viewed as a process, software
design is the software engineering life cycle activity in
which software requirements are analyzed in order to
produce a description of the software’s internal structure
that will serve as the basis for its construction.”

Coverage – even within the software domain, this
definition is far too restrictive. If someone simply
writes software without creating an intermediate
description of its structure, this is still design.
Design is, furthermore, not limited to the phase of
the software engineering life cycle between
requirements analysis and construction; it is in no
way clear that these phases can be practically
distinguished in all situations.

(Buchanan
2006)

“Design is the human power to conceive, plan and realize
all of the products that serve human beings in the
accomplishment of their individual or collective purposes.”

Coverage – Design is not an ability (“power”) but
an activity. E.g., drawing blueprints for a house, by
this definition, is not design.
Unambiguousness – it is not clear what “products”
are – does this include processes and strategies as
well as consumer goods?

(Complin
1997)

“‘design’ is used to refer to the abstract description of the
functional architecture of both real or possible systems.”

Coverage – Excludes design of simple things, such
as boomerangs.
Meaningfulness – it is not clear what “functional
architecture” entails

(van Engers et
al. 2001)

“the creative process of coming up with a well–structured
model that optimizes technological constraints, given a
specification.”

Coverage – excludes all suboptimal artifacts.
Meaningfulness – the meanings of “specification”
and model are unclear.

(Eckroth et al.
2007)

“Design (as a verb) is a human activity resulting in a unique
design (specification, description) of artifacts. Therefore,
what can be designed varies greatly. However, common to
all design is intention: all designs have a goal, and the goal
is typically meeting needs, improving situations, or creating
something new. Thus, design is the process of changing an
existing environment into a desired environment by way of
specifying the properties of artifacts that will constitute the
desired environment; in other words, creating, modifying,
or specifying how to create or alter artifacts to meet needs.
In addition, it is best communicated in terms of a particular
context, as previous knowledge, experience, and
expectations play a strong role in designing and
understanding designs.”

Coverage – excludes independently inventing
previously created artifacts and design starting
from a hypothetical situations

(FitzGerald
and
FitzGerald
1987)

“design means to map out, to plan, or to arrange the parts
into a whole which satisfies the objectives involved.”

Coverage – this excludes artifacts that satisfy only
some of their objectives. E.g., Enterprise-Resource
Planning software does not always satisfy its stated
objectives [60], but surely it as still designed.

162

www.manaraa.com

Source Definition Criticism
(Freeman and
Hart 2004)

“design encompasses all the activities involved in
conceptualizing, framing, implementing, commissioning,
and ultimately modifying complex systems—not just the
activity following requirements specification and before
programming, as it might be translated from a stylized
software engineering process.”

Coverage – simple systems and non-systems can
also be designed, e.g. an oar, a boomerang.
Meaningfulness – the activities are not defined or
clearly explained; furthermore, enumerating the
tasks encompassed by design does not necessarily
capture the meaning of design.

(Gero 1990) “a goal-oriented, constrained, decision-making, exploration
and learning activity which operates within a context which
depends on the designer's perception of the context.”

Coverage – The problem here is subtle. Not all
design is a decision making activity; some
designers, such as sculptors, may proceed fluidly
without discrete decisions. It could be argued that
their decisions are implicit, but then this definition
would include activities such as public speaking.
Decision-making is a perspective on design, not
inherent to it. Furthermore, the idea of designing as
leading to a new or changed artifact is missing.

(Harris 1995) “A collection of activities designed to help the analyst
prepare alternative solutions to information systems
problems.”

Coverage – excludes design for non problems
outside information system.
Meaningfulness – use of “designed” is circular

(Hevner et al.
2004)

“design is the purposeful organization of resources to
accomplish a goal.”

Coverage – includes organization tasks that do not
constitute design, e.g., alphabetizing books.
Meaningfulness – resources is undefined; e.g.,
what are the resources organized to create a
military strategy? What are the resources that are
being organized in graphics design?
Unambiguousness – usage of “organization;” is it
physical organization of resources, or mental?

(Hinrichs
1992)

“the task of generating descriptions of artifacts or processes
in some domain”

Coverage – includes descriptions that are not, e.g.,
“the chair is brown.”

(Hirschheim
et al. 1995)

“systems analysis is the process of collecting, organizing,
and analyzing facts about a particular [information system]
and the environment in which it operates. Systems design
then is the conception, generation and formation of a new
system, using the analysis results.”

Coverage – excludes design of non-systems and
designs that end in a complete specification (e.g.,
of a bridge) rather than a system.
Meaningfulness – this definition hinges on
undefined terms “conception, generation and
formation”

(Jobs 2000) “Design is the fundamental soul of a man-made creation
that ends up expressing itself in successive outer layers of
the product or service.”

Coverage – excludes designs not involving a
product or service and designs that are not “man-
made”
Meaningfulness – the meaning of “fundamental
soul” is unclear

(Love 2002) “‘Design’— a noun referring to a specification or plan for
making a particular artefact or for undertaking a particular
activity. A distinction is drawn here between a design and
an artifact — a design is the basis for, and precursor to, the
making of an artefact.”
“‘Designing’—human activity leading to the production of
a design.”

Coverage – 1) the strict time sequencing implied
by this definition is unnecessarily limiting; e.g., in
software engineering simultaneous design and
creation is arguably the preferred approach [65]
[35], 2) Design is not strictly a human activity
Meaningfulness - “Artefact” is undefined, so the
scope is unknown.

Merriam-
Webster
Online (verb)

“transitive senses 1 : to create, fashion, execute, or
construct according to plan : DEVISE, CONTRIVE 2 a : to
conceive and plan out in the mind <he designed the perfect
crime> 4 a : to make a drawing, pattern, or sketch of b : to
draw the plans for”

Coverage – t would include drawing a diagram of
a tree (not design), but not collaboratively writing
a new search algorithm (design).
Meaningfulness – circular reference to ‘design’

163

www.manaraa.com

Source Definition Criticism
Merriam-
Webster
Online
[noun]

“1 a : a particular purpose held in view by an individual or
group <he has ambitious designs for his son> b : deliberate
purposive planning <more by accident than design> 2 : a
mental project or scheme in which means to an end are laid
down 4 : a preliminary sketch or outline showing the main
features of something to be executed : DELINEATION 5 a :
an underlying scheme that governs functioning, developing,
or unfolding : PATTERN, MOTIF <the general design of
the epic> b : a plan or protocol for carrying out or
accomplishing something (as a scientific experiment); also :
the process of preparing this 6 : the arrangement of
elements or details in a product or work of art 7 : a
decorative pattern 8 : the creative art of executing aesthetic
or functional designs”

Coverage - Overall, this definition does not
provide a unifying notion of the minimum
requirements to call something a design, and does
not separate designing from planning.
Meaningfulness – circular reference to ‘designs’

(Miller 2005) “Design is the thought process comprising the creation of
an entity.”

Coverage – design can encompass more than just a
thought process; e.g., drawing diagrams. Thought
processes cannot create physical things.

(Nunamaker
et al. 1991)

“Design ... involves the understanding of the studied
domain, the application of relevant scientific and technical
knowledge, the creation of various alternatives, and the
synthesis and evaluation of proposed alternative solutions.”

Coverage – if a person has a breakthrough idea and
implements a single, innovative artifact, without
considering any alternatives, this would still be
design. Depending on how one defines “scientific
knowledge,” many designers throughout history
would be excluded by this definition.

(Papanek
1983)

“Design is a conscious and intuitive effort to impose
meaningful order.... Design is both the underlying matrix of
order and the tool that creates it.”

Coverage – Would include all ordering activities,
such as alphabetizing books
Meaningfulness – ‘underlying matrix of order’ is
undefined.
Ease of use – unclear how to operationalize
“matrix of order”

(The Partners
of Pentagram
1978)

“A design is a plan to make something: something we can
see or hold or walk into; something that is two-dimensional
or three-dimensional, and sometimes in the time dimension.
It is always something seen and sometimes something
touched, and now and then by association, something
heard.”

Coverage – This definition excludes design of an
incorporeal thing, e.g., a philosophy, society or
strategy.

(Pye 1964) “Invention is the process of discovering a principle. Design
is the process of applying that principle. The inventor
discovers a class of system – a generalization – and the
designer prescribes a particular embodiment of it to suit the
particular result, objects and source of energy he is
concerned with.”

Coverage – Designing need not comply with
principles; e.g., one might design a software
interface with absolutely no knowledge of any
principles regarding interface design. The interface
is no less designed by someone.

(Richardson
1984)

“Design is a general term, comprising all aspects of
organization in the visual arts.”

Coverage – excludes design in architecture,
engineering, etc.

(Schurch
1999)

“urban design might be more clearly defined as “giving
physical design direction to urban growth, conservation,
and change...” as practised by the allied environmental
design professions of architecture (Barnett 1982, p. 12),
landscape architecture and urban planning and others, for
that matter, such as engineers, developers, artists, grass
roots groups, etc.”

Coverage – Though design intuitively may give
direction, not all instances of giving direction are
design; e.g., the mere command “give the castle a
moat” gives direction, but is clearly not design
Meaningfulness – ‘physical design direction’
undefined

(Simon 1996) “Design is devising courses of action aimed at changing
existing situations into preferred ones.”

Coverage – excludes designs beginning from
hypothetical situations, e.g., when a national
defense agency designs a contingency plan for a
nuclear attack, and designing imagined system.

164

www.manaraa.com

Source Definition Criticism
(Stumpf and
Teague 2005)

“Design is a process which creates descriptions of a newly
devised artifact. The product of the design process is a
description which is sufficiently complete and detailed to
assure that the artifact can be built.”

Coverage – includes describing an artifact that
already exists, e.g. ‘the cruise ship is big;’ excludes
partially designed objects and design of imaginary
objects.

(Urban
Design Group
2003)

“Urban design is the process of shaping the physical setting
for life in cities, towns and villages. It is the art of making
places.”

Coverage – This definition confuses design as
planning a setting with the physical process of
implementing that plan; e.g., by this definition,
planning the park is not designing, but laying the
sods is.

(Walls et al.
1992)

“The design process is analogous to the scientific method in
that a design, like a theory, is a set of hypotheses and
ultimately can be proven only by construction of the artifact
it describes.”

Coverage – While a design may imply a set of
hypotheses, saying the design is the like saying
being hungry is making a sandwich.
Ease of Use – representing a design as a set of
hypotheses may be difficult.

165

www.manaraa.com

APPENDIX C: BACKGROUND ON PROCESS THEORIES

Significant disagreement exists regarding the nature of process theories. For instance, following Mohr

(1982), Markus and Robey (1988) described a process theory as “a recipe of sufficient conditions

occurring over time” (p. 584) and “concerned with explaining how outcomes develop over time” (p. 589).

In contrast, Van de Ven and Poole (1995) defined a process theory more broadly, as “an explanation of

how and why an organizational entity changes and develops” (p. 512). More generally, Gregor (2006)

identified five types of theories: “(i) theory for analysing; (ii) theory for explaining, (iii) theory for

predicting; (iv) theory for explaining and predicting; and (v) theory for design and action” (p. 611).

Clearly, Van de Ven and Poole characterize process theories as a theories for explaining. In contrast, with

their focus on necessary and sufficient conditions, Markus and Robey have characterized a process

theories as a theories for predicting, i.e., if the “recipe of sufficient conditions” holds, the predicted

outcomes will follow. Van de Ven and Poole also classify organizational process theories into four

categories: lifecycle, dialectic, evolutionary and teleological.

A lifecycle theory “is a unitary sequence (it follows a single sequence of stages or phases), which is

cumulative (characteristics acquired in earlier stages are retained in later stages) and conjunctive (the

stages are related such that they derive from a common underlying process)” (Van de Ven and Poole

1995, p. 515). This progression occurs because “the trajectory to the final end state is prefigured and

requires a particular historical sequence of events” (p. 515). Lifecycle theories have their roots in

biological life cycles. The Basic Design Cycle (discussed in ch. 3) exhibits many characteristics of

lifecycle theories.

In dialectic process theories, “stability and change are explained by reference to the balance of power

between opposing entities” (Van de Ven and Poole 1995, p. 517). This is rooted in the argumentative

methods of classical philosophy. Dialectic process theories, therefore, posit two or more entities with

166

www.manaraa.com

manifest conflicts and model change with respect to inter-entity power. Both Soft Systems Methodology

and Extreme Programming (discussed in ch. 3) have elements of dialectic process – SSM in its discussion

with stakeholders and XP in its negotiation between “business” and “development.”

In an evolutionary process theory, a population of “organizational entities” undergoes structural changes

through “variation, selection and retention” (Van de Ven and Poole 1995, p. 518). Variation involves

producing new entities through chance occurrences. Selection is the preservation of organizations with

higher fitness and elimination of those with lower fitness. “Retention involves forces (including inertia

and persistence) that perpetuate and maintain certain organizational forms” (Van de Ven and Poole 1995,

p. 518). Maher’s Problem-Design Exploration Model (discussed in ch. 3) has many characteristics of an

evolutionary process theory.

Merriam-Webster defines teleological as “exhibiting or relating to design or purpose especially in

nature.” 1 In a teleological process theory, an agent “constructs an envisioned end state, takes action to

reach it and monitors the progress” (Van de Ven and Poole 1995, p. 518). In other words, teleological

theories explain the behavior of agents taking steps to reach a goal, but the agent chooses its own

sequence of steps. Teleological theories were originally proposed by Singer (1959), in the domain of

biology, and further elucidated by Churchman (1971). Van de Ven and Poole found that teleological

process theories are the most common type in the organizational literature.

Of the four types of process theories identified by Van de Ven and Poole, only lifecycle theories satisfy

Markus and Robey’s criteria for being process theories. Specifically, the “historical sequence of events”

of lifecycle theories is analogous to the kind of “recipe of sufficient conditions” Markus and Robey

require. This is problematic both pragmatically and theoretically. Pragmatically speaking, adopting

Markus and Robey’s conception of process theories would exclude three of the four types identified by

Van de Ven and Poole. Specifically, this would exclude evolution, with its prominence in the history of

167
1 http://www.merriam-webster.com/dictionary/teleological

http://www.merriam-webster.com/dictionary/teleological
http://www.merriam-webster.com/dictionary/teleological

www.manaraa.com

science; teleology, the most common type of process theory in organizational literature; and dialectic,

which has occupied a central place in philosophy for more than 2000 years. I contend that any working

definition of process theory that excludes Singer, Darwin and Plato is, at minimum, pragmatically

awkward.

Theoretically speaking, in asking for sufficient (and necessary) conditions, Markus and Robey seem to

conflate their conception of process theory with a counterfactual analysis approach to causality. That is,

causality is defined by the events without which the outcome could not have occurred. Gregor (2006)

identifies three other forms of causal analysis: “regularity (or nomological)”, “probabilistic” and

“teleological.” Briefly, under regularity causation, X causes Y if Y always follows X; under probabilistic

causation, X causes Y if the probability of Y given X is higher than the probability of Y given not-X;

under teleological causation, the cause of an event is the agent that brings it about. Lifecycle theories

involve counterfactual causation through its “unitary sequence” - the latter activities (and outcome)

cannot occur without the earlier activities. Evolutionary theories embed notions of probabilistic causation

within the selection concept – the structural properties relate to the probability of survival through the

fitness function. Dialectic theories involve the regularity approach to causation insofar as change always

follows sufficient shifts in power2. Finally, teleological theories, by definition, involve a teleological

approach to causation. This analysis is summarized in Table A-3.

Markus and Robey’s conception of process theory is inappropriate for software design science for three

interrelated reasons. First, this conception is inextricably tied to a counterfactual approach to causality, as

described above. Second, design is a teleological activity (Churchman 1971), that is, an activity driven by

an agent in response to a goal. Focusing on antecedents (necessary and sufficient conditions) marginalizes

the influence of the goal and agent’s freedom to determine its course of action. Third, the focus on

168

2 It could also be argued that dialectic process theories embed a teleological approach to causality in the sense that
changes are enacted by agents. Similarly, whether dialectic theories embed a probabilistic or regularity approach to
causation depends on whether changes occur if power shifts beyond a set tipping point or the probability of a change
varies with the ratio of inter-entity power. As dialectic theories are not central to this paper, further analysis and
elucidation of the causal approach of dialectic theories is left to future work.

www.manaraa.com

antecedents also overshadows the potentially rich interactions between the agent, goal and activities;

conceptualizing a process theory as a series of necessary and sufficient conditions marginalizes the study

of situated action. Heavy criticism of precisely this kind of abstraction away from situated human action

motivated the ethno-view of human action discussed above (Suchman 1987). In summary, Markus and

Robey’s conception of process theory is inappropriate in the science of design because it is in

incompatible with teleological causality, shifts the theoretical focus away from goals and abstracts away

the details of situated action.

Table A-3. Analysis of Types of Process Theories (partially adapted from Van de Ven and Poole 1995)

Type of Process
Theory

Dialectic Evolutionary Lifecycle Teleological

Proponents (Plato; Hegel; Van de
Ven et al. 1995)

(Darwin; Van de Ven et al.
1995)

(Markus and Robey 1988;
Van de Ven and Poole
1995)

(Churchman 1971; Singer
1959; Van de Ven and
Poole 1995)

Capsule
Description

Changes result from
shifts in power among
conflicting entities

A population of entities
changes as less fit entities
expire and remaining
entities change and
recombine

An entity progresses
through a series of stages
in a predefined sequence

An agent purposefully
selects and takes actions to
achieve a goal

Event
Progression

Recurrent,
discontinuous
sequence of conflict
and resolution

Recurrent, cumulative and
probabilistic sequence of
variation, selection and
retention

Linear & irreversible
sequence of prescribed
stages

Recurrent, agent-
determined sequence of
goal setting and action
taking

Contemporary
Example

Behavioral
Negotiation Theory
(Neal and Northcraft
1991)

Change in populations of
organizations (Carroll and
Hannan 1989)

The Organizational
Lifecycle (Kimberly and
Miles 1980)

Organizational decision
making (March and Simon
1958)

Considering this analysis, for the purposes of this paper, I adapt Van de Ven and Poole’s definition of a

process theory as “an explanation of how and why an [entity] changes and develops” (p. 512), with two

caveats: 1) I omit “organizational” from “organizational entity” because process theories could also

describe actions of an individual or inanimate system; 2) I interpret “why” to encompass any combination

of the four approaches to causality identified by Gregor (2006).

It is important to distinguish process theories from process models. “A process model is an abstract

description of an actual or proposed process that represents selected process elements that are considered

important to the purpose of the model and can be enacted by a human or machine” (Curtis et al. 1992, p.
169

www.manaraa.com

76). Two salient differences between process theories and process models are evident – intent and scope.

The intent of a process model is to describe a sequence of activities, whereas the intent of a process

theory is to explain how and why a change occurs, where ‘how’ does not necessarily refer to an activity

sequence. The scope of a process model is confined to the particular sequence of events in question,

whereas a process theory seeks to explain all of the ways an outcome may (or may have) come about. It

should, therefore, come as no surprise if process theories have little in common with process models.

170

www.manaraa.com

APPENDIX D: EXTENDED DESIGN LITERATURE REVIEW

This appendix describes selected topics that are not directly relevant to the dissertation research but may

seem so on first glance.

Mapping Theories. Several works attempt to provide mathematical descriptions of design in terms of

mappings between two or more sets. These include General Design Theory (Tomiyama and Yoshikawa

1985; Yoshikawa 1980), Universal Design Theory (Grabowski et al. 1999), and C-K Theory (Hatchuel

and Weil 2002; Hatchuel and Weil 2003). General Design Theory describes design as a mapping between

an “attribute space” and a “function space.” Universal Design Theory describes design as a mapping

between “the set of requirements” and “the set of design parameters.” C-K Theory describes design as a

mapping between the Concepts (C) and Knowledge (K) used by a designer. In each mapping theory, one

set contains information about the problem or situation (function space, set of requirements, knowledge)

and the other set contains information about design candidates (attribute space, set of design parameters,

concepts). These mapping theories are generally compatible with the Technical Problem-Solving

paradigm, discussed above; however, C-K theory seeks to explicitly allow for creativity (Hatchuel and

Weil 2003).

While these theories lend some conceptual support to the design space / problem space distinction

discussed above, they do not provide insight into how or why designers operate beyond dividing the

contents of the designer’s mind into two sets and describing design as creating a mapping between them.

Moreover, my literature review revealed no empirical tests of their veracity.

The Production/Deduction/Induction Model. March (1984) proposed a “model of the rational design

process” (p. 270) comprised of three different forms of reasoning (see Figure A-1). In this model, the

designer produces a “design proposal” from the system requirements and some presuppositions, using

productive reasoning. Productive (or abductive) reasoning is the method of reasoning from facts to an

explanation. The designer then predicts the characteristics of the design proposal using deductive

171

www.manaraa.com

reasoning. Next, the designer uses inductive reasoning to generate new suppositions from the design

proposal and its predicted characteristics. The cycle may then repeat, using these new suppositions to

generate a new design proposal and so on, until a satisfactory design proposal is found.

Fig. A-2. The Production/Deduction/Induction Model (from March 1984)

March’s (1984) PDI Model is interesting in that it identifies three types of reasoning that may be used by

designers. Furthermore, it characterizes design as “a critical, learning process in that statements inferred

at later stages may be used to modify those used in earlier stages and thus to stimulate other paths of

exploration” (p. 270). However, March explicitly states that the PDI model is not intended to, or capable

of, describing all design: “If internalized personal judgment, experience, and intuition alone are relied

upon, the three modes of the PDI-model become inextricably entangled” (p. 272). March further argues

that such entangling is generally detrimental to the accumulation of scientific knowledge.

172

www.manaraa.com

APPENDIX E: QUESTIONNAIRE ITEMS

A summary of the questionnaire instrument described in Chapter Four follows.

Project Summary

The purpose of this research project is to study how software is created "in the wild." At the end of the

survey you will find out your "developer personality" (which is similar to a Myers-Briggs personality but

specific to software development). The purpose of this study is to learn from you, not to evaluate you.

This project is NOT associated with any known risks. We will not sell or share your personal information

under any circumstances.

Propositions 1 and 3

Important Directions: Please answer all questions based on "your project."

Definition 1: your project is the software development project on which you are currently working. If you

are not currently working on a project, your project is the last one you worked on. If you are working on

multiple projects, your project is the one on which you spend the most time.

Definition 2: your team consists of everyone with whom you collaborate closely on your project,

regardless of their geographic location or official title. Your team is all the people you feel like you work

with.

1. Please indicate the extent to which you agree with the following statements. (Required) (Five point

scale from “Strongly Disagree” to “Strongly Agree” with “N/A” option)

• No one thing drives all design decisions – they are made based on a variety of information

• Changes to my team's understanding of what the software is supposed to do were triggered by

changes in our understanding of the problem/situation

173

www.manaraa.com

• My understanding of what the software is supposed to do has been influenced by several factors

(e.g., management, marketing, clients, the dev team, standards, my own values, experience on

previous products, etc.)

• My understanding of the software’s purpose has been influenced by several factors (e.g.,

management, marketing, clients, the dev team, standards, my own values, experience on previous

products, etc.)

• The process of designing the software has NOT helped my team better understand the context in

which the software is intended to be used

• A complete, correct specification of low-level design decisions was available before coding began

(*e.g., whether to use a hashtable or array to store usernames)

• The software was coded iteratively

• My team has revised the software code based on new information (e.g., bug reports, failed unit tests,

feedback from Quality Assurance, etc.)

• My team now understands what the software is supposed to do better than we did when we started

coding

• Low-level design decisions* were primarily made before the first line of code was written (*e.g.,

whether to use a hashtable or array to store usernames)

Proposition 2

2. Important Definition: For the purposes of this survey, a model is an abstraction of the software.Models

can be diagrammatic (e.g., UML class diagrams, data flow diagrams) or text (e.g., a list of requirements, a

set of user stories). Just to be clear, code refers to the source code of the software.

We have found that some developers figure out the detailed design of a product through making and

revising models, whereas others do their detailed design by writing and revising code. (Reminder:

detailed design refers to things like deciding whether to use a hash table or an array to store passwords).

174

www.manaraa.com

Please indicate where you and your team do your detailed design work. (Required) (five-point scale

ranging from “Exclusively with models,” to “Exclusively with code.”)

• I do detailed design...

• My team does detailed design...

3. It is possible to test software in two ways: 1) Prediction: testers inspect models of the software and

predict how code based on those models will behave (e.g., predict from a UML class diagram how the

code will handle an error); 2) Observation: testers run the code and see what it does (e.g., unit testing,

manually test the interface).

Which of these is more consistent with how your team does testing? (Required) (five-point scale ranging

from “Exclusively prediction,” to “Exclusively observation.”)

About You and Your Project

Please answer all questions to the best of your knowledge. If you don't know the answer to a question,

skip it, but please do not skip questions unnecessarily.

4. What is your gender?

5. What is the highest level of education you have attained?

6. How long have you been involved in the software development industry? (In-house, off-the-shelf, for-

client, etc.)

7. What is your current occupation (check all that apply)

8. How many employees does your company have?

9. What roles have you held in your project? (check all that apply)

175

www.manaraa.com

10. Approximately how many people are currently on your development team? (If the project is complete,

what was the largest number of people who were on the team at one time?)

11. Please list any development methods your team is explicitly using (e.g., RUP, Extreme Programming,

SCRUM, Service Oriented Architecture).

12. Approximately how long has your project been in progress?

13. Is your project more "social" (like a website) or "technical" (like a device driver)?

14. Is there anything else you would like to add to your response? Anything you feel we should know?

15. If you would be willing to discuss your results further, please enter your contact info below. (Don't

worry, we hate spam as much as you do.)

176

www.manaraa.com

APPENDIX F: BEHAVIORAL RESEARCH ETHICS BOARD
CERTIFICATE OF APPROVAL

177

